ﻻ يوجد ملخص باللغة العربية
We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic domain wall. We show how the domain wall size is affected by the superconductivity in such structures. Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin current density and local density of states, as well as the resulting tunneling conductance into a structure with a magnetic domain wall.
Superconductor-ferromagnetic heterostructures have been suggested as one of the most promising alternatives of realizing odd-frequency superconductivity. In this work we consider the limit of shrinking the ferromagnetic region to the limit of a singl
The electronic states near a surface or a domain wall in the p-wave superconductor are studied for the order parameter of the form p_xpm i p_y-wave, which is a unitary odd-parity state with broken time-reversal symmetry. This state has been recently
The electronic states near a surface or a domain wall in the p_x pm i p_y -wave superconductor are studied. This state has been recently suggested as the superconducting state of Sr_2 Ru O_4. The p_x pm i p_y-wave paring state breaks the time reversa
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor
When charged particles in periodic lattices are subjected to a constant electric field, they respond by oscillating. Here we demonstrate that the magnetic analogue of these Bloch oscillations are realised in a one-dimensional ferromagnetic easy axis