ﻻ يوجد ملخص باللغة العربية
The Nab experiment will measure the ratio of the weak axial-vector and vector coupling constants $lambda=g_A/g_V$ with precision $deltalambda/lambdasim3times10^{-4}$ and search for a Fierz term $b_F$ at a level $Delta b_F<10^{-3}$. The Nab detection system uses thick, large area, segmented silicon detectors to very precisely determine the decay protons time of flight and the decay electrons energy in coincidence and reconstruct the correlation between the antineutrino and electron momenta. Excellent understanding of systematic effects affecting timing and energy reconstruction using this detection system are required. To explore these effects, a series of ex situ studies have been undertaken, including a search for a Fierz term at a less sensitive level of $Delta b_F<10^{-2}$ in the beta decay of $^{45}$Ca using the UCNA spectrometer.
Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the
Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
To measure the main characteristics of radiative neutron decay, namely its relative intensity BR (branching ratio), it is necessary to measure the spectra of double coincidences between beta-electron and proton as well as the spectra of triple coinci
The puzzle remains in the large discrepancy between neutron lifetime measured by the two distinct experimental approaches -- counts of beta decays in a neutron beam and storage of ultracold neutrons in a potential trap, namely, the beam method versus
The aCORN experiment uses a novel asymmetry method to measure the electron-antineutrino correlation (a-coefficient) in free neutron decay that does not require precision proton spectroscopy. aCORN completed two physics runs at the NIST Center for Neu