ﻻ يوجد ملخص باللغة العربية
Recent lattice QCD studies at vanishing density exhibit the parity-doubling structure for the low-lying baryons around the chiral crossover temperature. This finding is likely an imprint of the chiral symmetry restoration in the baryonic sector of QCD, and is expected to occur also in cold dense matter, which makes it of major relevance for compact stars. By contrast, typical effective models for compact star matter embody chiral physics solely in the deconfined sector, with quarks as degrees of freedom. In this contribution, we present a description of QCD matter based on the effective hybrid quark-meson-nucleon model. Its characteristic feature is that, under neutron-star conditions, the chiral symmetry is restored in a first-order phase transition deep in the hadronic phase, before the deconfinement of quarks takes place. We discuss the implications of the parity doubling of baryons on the mass-radius relation for compact stars obtained in accordance with the modern constraints on the mass from PSR J0348+0432, the compactness from GW170817, as well as the direct URCA process threshold. We show that the existence of high-mass stars might not necessarily signal the deconfinement of quarks.
We investigate the equation of state for a recently developed hybrid quark-meson-nucleon model under neutron star conditions of $beta-$equilibrium and charge neutrality. The model has the characteristic feature that at increasing baryon density chira
Based on an equivparticle model, we investigate the in-medium quark condensate in neutron stars. Carrying out a Taylor expansion of the nuclear binding energy to the order of $rho^3$, we obtain a series of EOSs for neutron star matter, which are conf
We study the phase structure of dense hadronic matter including $Delta(1232)$ as well as N(939) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in sym
The partial restoration of chiral symmetry in nuclear medium is investigated in a model independent way by exploiting operator relations in QCD. An exact sum rule is derived for the quark condensate valid for all density. This sum rule is simplified
Recent topics on mesons in nuclei are discussed by especially emphasizing the role of the partial restoration of chiral symmetry in the nuclear medium. The spontaneously broken chiral symmetry in vacuum is considered to be incompletely restored in fi