ﻻ يوجد ملخص باللغة العربية
The temporal-mode (TM) basis is a prime candidate to perform high-dimensional quantum encoding. Quantum frequency conversion has been employed as a tool to perform tomographic analysis and manipulation of ultrafast states of quantum light necessary to implement a TM-based encoding protocol. While demultiplexing of such states of light has been demonstrated in the Quantum Pulse Gate (QPG), a multiplexing device is needed to complete an experimental framework for TM encoding. In this work we demonstrate the reverse process of the QPG. A dispersion-engineered difference frequency generation in non-linear optical waveguides is employed to imprint the pulse shape of the pump pulse onto the output. This transformation is unitary and can be more efficient than classical pulse shaping methods. We experimentally study the process by shaping the first five orders of Hermite-Gauss modes of various bandwidths. Finally, we establish and model the limits of practical, reliable shaping operation.
Multimode entanglement is quintessential for the design and fabrication of quantum networks, which play a central role in quantum information processing and quantum metrology. However, an experimental setup is generally constructed with a specific ne
We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 mum) and thus covering much of the infrared fingerprint molecular vibration region. It is based on nonlinear frequency c
A method for time differentiation based on a Babinet-Soleil-Bravais compensator is introduced. The complex transfer function of the device is measured using polarization spectral interferometry. Time differentiation of both the pulse field and pulse
Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the propertie
Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we