ﻻ يوجد ملخص باللغة العربية
Let $k$ be an even integer and $S_k$ be the space of cusp forms of weight $k$ on $SL_2(ZZ)$. Let $S = oplus_{kin 2ZZ} S_k$. For $f, gin S$, we let $R(f, g) = { (a_f(p), a_g(p)) in mathbb{P}^1(CC) | text{$p$ is a prime} }$ be the set of ratios of the Fourier coefficients of $f$ and $g$, where $a_f(n)$ (resp. $a_g(n)$) is the $n$th Fourier coefficient of $f$ (resp. $g$). In this paper, we prove that if $f$ and $g$ are nonzero and $R(f,g)$ is finite, then $f = cg$ for some constant $c$. This result is extended to the space of weakly holomorphic modular forms on $SL_2(ZZ)$. We apply it to studying the number of representations of a positive integer by a quadratic form.
In this note, we consider discriminant forms that are given by the norm form of real quadratic fields and their induced Weil representations. We prove that there exists an isomorphism between the space of vector-valued modular forms for the Weil repr
In this note, we generalize the isomorphisms to the case when the discriminant form is not necessarily induced from real quadratic fields. In particular, this general setting includes all the subspaces with epsilon-conditions, only two spacial cases
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for
We discuss practical and some theoretical aspects of computing a database of classical modular forms in the L-functions and Modular Forms Database (LMFDB).
Modular forms are highly self-symmetric functions studied in number theory, with connections to several areas of mathematics. But they are rarely visualized. We discuss ongoing work to compute and visualize modular forms as 3D surfaces and to use the