ترغب بنشر مسار تعليمي؟ اضغط هنا

K2 Ultracool Dwarfs Survey. V. High superflare rates on rapidly rotating late-M dwarfs

122   0   0.0 ( 0 )
 نشر من قبل Rishi Paudel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed strong superflares (defined as flares with energy in excess of 10^33 erg) on three late-M dwarfs: 2MASS J08315742+2042213 (hereafter 2M0831+2042; M7 V), 2MASS J08371832+2050349 (hereafter 2M0837+2050; M8 V) and 2MASS J08312608+2244586 (hereafter 2M0831+2244; M9 V). 2M0831+2042 and 2M0837+2050 are members of the young (~700 Myr) open cluster Praesepe. The strong superflare on 2M0831+2042 has an equivalent duration (ED) of 13.7 hr and an estimated energy of 1.3 X 10^35 erg. We observed five superflares on 2M0837+2050, on which the strongest superflare has an ED of 46.4 hr and an estimated energy of 3.5 X 10^35 erg. This energy is larger by 2.7 orders of magnitude than the largest flare observed on the older (7.6 Gyr) planet-hosting M8 dwarf TRAPPIST-1. Furthermore, we also observed five superflares on 2M0831+2244 which is probably a field star. The estimated energy of the strongest superflare on 2M0831+2244 is 6.1 X 10^34 erg. 2M0831+2042, 2M0837+2050 and 2MASS J0831+2244 have rotation periods of 0.556pm0.002, 0.193pm0.000 and 0.292pm0.001 d respectively, which are measured by using K2 light curves. We compare the flares of younger targets with those of TRAPPIST-1 and discuss the possible impacts of such flares on planets in the habitable zone of late-M dwarfs.



قيم البحث

اقرأ أيضاً

Kepler K2 long cadence data are used to study white light flares in a sample of 45 L dwarfs. We identified 11 flares on 9 L dwarfs with equivalent durations of (1.3 - 198) hr and total (UV/optical/IR) energies of $geq$0.9 $times$ 10$^{32}$ erg. Two s uperflares with energies of $>$10$^{33}$ erg were detected on an L5 dwarf: this is the coolest object so far on which flares have been identified. The larger superflare on this L5 dwarf has an energy of 4.6$times$ 10$^{34}$ ergs and an amplitude of $>$300 times the photospheric level: so far, this is the largest amplitude flare detected by the $Kepler/K2$ mission. The next coolest star on which we identified a flare was an L2 dwarf: 2MASS J08585891+1804463. Combining the energies of all the flares which we have identified on 9 L dwarfs with the total observation time which was dedicated by $Kepler$ to all 45 L dwarfs, we construct a composite flare frequency distribution (FFD). The FFD slope is quite shallow (-0.51$pm$0.17), consistent with earlier results reported by Paudel et al. (2018) for one particular L0 dwarf, for which the FFD slope was found to be -0.34. Using the composite FFD, we predict that, in early and mid-L dwarfs, a superflare of energy 10$^{33}$ erg occurs every 2.4 years and a superflare of energy 10$^{34}$ erg occurs every 7.9 years. Analysis of our L dwarf flares suggests that magnetic fields of $geq$0.13-1.3 kG are present on the stellar surface: such fields could suppress Type II radio bursts.
298 - Megan E. Tannock 2021
We present the discovery of rapid photometric variability in three ultra-cool dwarfs from long-duration monitoring with the Spitzer Space Telescope. The T7, L3.5, and L8 dwarfs have the shortest photometric periods known to date: ${1.080}^{+0.004}_{- 0.005}$ h, ${1.14}^{+0.03}_{-0.01}$ h, and ${1.23}^{+0.01}_{-0.01}$ h, respectively. We confirm the rapid rotation through moderate-resolution infrared spectroscopy, which reveals projected rotational velocities between 79 and 104 km s$^{-1}$. We compare the near-infrared spectra to photospheric models to determine the objects fundamental parameters and radial velocities. We find that the equatorial rotational velocities for all three objects are $gtrsim$100 km s$^{-1}$. The three L and T dwarfs reported here are the most rapidly spinning and likely the most oblate field ultra-cool dwarfs known to date. Correspondingly, all three are excellent candidates for seeking auroral radio emission and net optical/infrared polarization. As of this writing, 78 L-, T-, and Y-dwarf rotation periods have now been measured. The clustering of the shortest rotation periods near 1 h suggests that brown dwarfs are unlikely to spin much faster.
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 and TESS data. All of these targets are part of young star-forming associations. Suggested explanations range from accretion of dust disks to co-rotating clouds of material to stellar spots getting periodically occulted by spin-orbit-misaligned dust disks. Here we provide a comprehensive overview of all aspects of these hypotheses, and add more observational constraints in an effort to understand these objects with photometry from TESS and the SPECULOOS Southern Observatory (SSO). We scrutinize the hypotheses from three different angles: (1) we investigate the occurrence rates of these scenarios through existing young star catalogs; (2) we study the longevity of these features using over one year of combined photometry from TESS and SSO; and (3) we probe the expected color dependency with multi-color photometry from SSO. In this process, we also revisit the stellar parameters accounting for activity effects, study stellar flares as activity indicators over year-long time scales, and develop toy models to imitate typical morphologies. We identify which parts of the hypotheses hold true or are challenged by these new observations. So far, none of the hypotheses stand out as a definite answer, and each come with limitations. While the mystery of these complex rotators remains, we here add valuable observational pieces to the puzzle for all studies going forward.
We conducted a volume-limited survey at 4.9 GHz of 32 nearby ultracool dwarfs with spectral types covering the range M7 -- T8. A statistical analysis was performed on the combined data from the present survey and previous radio observations of ultrac ool dwarfs. Whilst no radio emission was detected from any of the targets, significant upper limits were placed on the radio luminosities that are below the luminosities of previously detected ultracool dwarfs. Combining our results with those from the literature gives a detection rate for dwarfs in the spectral range M7 -- L3.5 of ~ 9%. In comparison, only one dwarf later than L3.5 is detected in 53 observations. We report the observed detection rate as a function of spectral type, and the number distribution of the dwarfs as a function of spectral type and rotation velocity. The radio observations to date point to a drop in the detection rate toward the ultracool dwarfs. However, the emission levels of detected ultracool dwarfs are comparable to those of earlier type active M dwarfs, which may imply that a mildly relativistic electron beam or a strong magnetic field can exist in ultracool dwarfs. Fast rotation may be a sufficient condition to produce magnetic fields strengths of several hundreds Gauss to several kilo Gauss, as suggested by the data for the active ultracool dwarfs with known rotation rates. A possible reason for the non-detection of radio emission from some dwarfs is that maybe the centrifugal acceleration mechanism in these dwarfs is weak (due to a low rotation rate) and thus cannot provide the necessary density and/or energy of accelerated electrons. An alternative explanation could be long-term variability, as is the case for several ultracool dwarfs whose radio emission varies considerably over long periods with emission levels dropping below the detection limit in some instances.
We present a large forward-modeling analysis for 55 late-T (T7-T9) dwarfs, using low-resolution ($Rapprox150$) near-infrared spectra and cloudless Sonora-Bobcat model atmospheres. We derive the objects effective temperatures, surface gravities, metal licities, radii, masses, and luminosities using our newly developed Bayesian framework, and use the resulting population properties to test the model atmospheres. We find (1) our objects fitted metallicities are 0.3-0.4 dex lower than those of nearby stars; (2) their ages derived from spectroscopic parameters are implausibly young; (3) their fitted temperatures show a similar spread as empirical temperature scales at a given spectral type but are $sim100$ K hotter for $geqslant$T8 dwarfs; and (4) their spectroscopically inferred masses are unphysically small. These results suggest the Sonora-Bobcat assumptions of cloudless and chemical-equilibrium atmospheres do not adequately reproduce late-T dwarf spectra. We also find a gravity- and a metallicity-dependence of temperatures. Combining the resulting parameter posteriors of our sample, we quantify the degeneracy between surface gravity and metallicity such that an increase in $Z$ combined with a $3.4times$ increase in $log{g}$ results in a spectrum that has similar fitted parameters. We note the systematic difference between our 1.0-2.5 $mu$m spectra and the Sonora-Bobcat models is $approx$2-4% of the objects peak $J$-band fluxes, implying modeling systematics will exceed measurement uncertainties when analyzing data with $J$-band S/N $gtrsim50$. Using our large sample, we examine the fitting residuals as a function of wavelength and atmospheric properties to discern how to improve the models. Our work constitutes the largest analysis of brown dwarf spectra using multi-metallicity models and the most systematic examination of ultracool model atmospheres to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا