ﻻ يوجد ملخص باللغة العربية
Spin-polarization of an ultrarelativistic electron beam head-on colliding with an ultraintense laser pulse is investigated in the quantum radiation-reaction regime. We develop a Monte-Carlo method to model electron radiative spin effects in arbitrary electromagnetic fields by employing spin-resolved radiation probabilities in the local constant field approximation. Due to spin-dependent radiation reaction, the applied elliptically polarized laser pulse polarizes the initially unpolarized electron beam and splits it along the propagation direction into two oppositely transversely polarized parts with a splitting angle of about tens of milliradians. Thus, a dense electron beam with above 70% polarization can be generated in tens of femtoseconds. The proposed method demonstrates a way for relativistic electron beam polarization with currently achievable laser facilities.
Stochasticity effects in the spin (de)polarization of an ultrarelativistic electron beam during photon emissions in a counterpropoagating ultrastrong focused laser pulse in the quantum radiation reaction regime are investigated. We employ a Monte Car
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer tr
Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments.
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde
Impacts of spin-polarization of an ultrarelativistic electron beam head-on colliding with a strong laser pulse on emitted photon spectra and electron dynamics have been investigated in the quantum radiation regime. We simulate photon emissions quantu