ﻻ يوجد ملخص باللغة العربية
Tidal disruption events (TDEs) are rare, 10^(-7)/yr/Mpc^3 (Hung et al. 2018), yet the large survey volume of LSST implies a very large detection rate of 200/yr/(1000 deg^2) (van Velzen et al. 2011), a factor of 250 increase in the detection capability of the current generation of optical synoptic surveys, e.g. ZTF, ASAS-SN, Pan-STARRS, and ATLAS. The goal of this LSST cadence white paper is to determine which survey strategy will ensure the efficient selection and characterization of TDEs in the LSST Wide-Fast-Deep Survey transient alert stream. We conclude that the baseline cadence design fails to 1) measure the u-r color and color evolution of transients, a critical parameter for distinguishing TDEs from SNe, and to 2) catch the pre-peak light curves of transients, an essential measurement for probing their rise times, which are in turn a probe of black hole mass in TDEs. If we do not harvest the fruits of the LSST transient alert stream with photometric classification and early detections, both TDE and SN science will be greatly limited. Hence, we propose for a smart and colorful rolling cadence in the Wide-Fast Deep (WFD) Survey, that allows for efficient photometric transient classification from well sampled multi-band light curves, with the 20,000 deg^2 survey divided into eight 2500 deg^2 strips each observed for one year in Years 2-9, with the full WFD area observed in Years 1 & 10. This will yield a legacy sample of 200 TDEs per year with early detections in u, g, and r bands for efficient classification and full light curve characterization.
Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmologica
This white paper specifies the footprints, cadence requirements, and total-depth requirements needed to allow the most-successful AGN studies in the four currently selected LSST Deep-Drilling Fields (DDFs): ELAIS-S1, XMM-LSS, CDF-S, and COSMOS. The i
To extend LSSTs coverage of the transient and variable sky down to minute timescales, we propose that observations of the Deep Drilling Fields are acquired in sequences of continuous exposures each lasting 2--4 hours. This will allow LSST to resolve
The Large Synoptic Survey Telescope (LSST) will be a discovery machine for the astronomy and physics communities, revealing astrophysical phenomena from the Solar System to the outer reaches of the observable Universe. While many discoveries will be
We identify minimal observing cadence requirements that enable photometric astronomical surveys to detect and recognize fast and explosive transients and fast transient features. Observations in two different filters within a short time window (e.g.,