ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Fermi arcs in a periodically driven Weyl system

148   0   0.0 ( 0 )
 نشر من قبل Valerio Peri
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three dimensional Weyl semimetals exhibit open Fermi arcs on their sample surfaces connecting the projection of bulk Weyl points of opposite chirality. The canonical interpretation of these surfaces states is in terms of chiral edge modes of a layer quantum Hall effect: The two-dimensional momentum-space planes perpendicular to the momentum connecting the two Weyl points are characterized by a non-zero Chern number. It might be interesting to note, that in analogy to the known two-dimensional Floquet anomalous chiral edge states, one can realize open Fermi arcs in the absence of Chern numbers in periodically driven system. Here, we present a way to construct such anomalous Fermi arcs in a concrete model.



قيم البحث

اقرأ أيضاً

We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as $1/k^2$, where $k$ is the distance to a hot-line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite chirality but which is distinct from the Fermi arc itself. Such surface Berry curvature appears whenever the bulk Weyl dispersion has a velocity tilt toward the surface of interest. This divergence is reflected in a variety of Berry curvature mediated effects that are readily accessible experimentally, and in particular leads to a surface Berry curvature dipole that grows linearly with the thickness of a slab of a Weyl semimetal material in the limit of long lifetime of surface states. This implies the emergence of a gigantic contribution to the non-linear Hall effect in such devices.
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.
95 - Y. C. Liu , V. Wang , J. B. Lin 2021
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubi c-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
120 - Ke Deng , Guoliang Wan , Peng Deng 2016
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fer mi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.
We demonstrate that a three dimensional time-periodically driven lattice system can exhibit a second-order chiral skin effect and describe its interplay with Weyl physics. This Floquet skin-effect manifests itself, when considering open rather than p eriodic boundary conditions for the system. Then an extensive number of bulk modes is transformed into chiral modes that are bound to the hinges (being second-order boundaries) of our system, while other bulk modes form Fermi arc surface states connecting a pair of Weyl points. At a fine tuned point, eventually all boundary states become hinge modes and the Weyl points disappear. The accumulation of an extensive number of modes at the hinges of the system resembles the non-Hermitian skin effect, with one noticeable difference being the localization of the Floquet hinge modes at increasing distances from the hinges in our system. We intuitively explain the emergence of hinge modes in terms of repeated backreflections between two hinge-sharing faces and relate their chiral transport properties to chiral Goos-Hanchen-like shifts associated with these reflections. Moreover, we formulate a topological theory of the second-order Floquet skin effect based on the quasi-energy winding around the Floquet-Brillouin zone for the family of hinge states. The implementation of a model featuring both the second-order Floquet skin effect and the Weyl physics is straightforward with ultracold atoms in optical superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا