ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmonium resonances from 2+1 flavor CLS lattices

46   0   0.0 ( 0 )
 نشر من قبل Stefano Piemonte
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Many exotic charmonium resonances have been identified recently in experiment, however their nature and properties are mostly unknown. Algorithmic and theoretical progress in lattice calculations has enabled reliable numerical investigation of the spectrum below the strong decay threshold, while the study of charmonium resonances remains an open challenge. The main difficulty to overcome is the presence of many open decay channels which are coupled together, resulting in a complex finite volume quantization condition. We report on our recent progress towards the determination of single-channel and coupled-channel scattering matrices in the scalar and vector channels on CLS ensembles. We also present an update concerning the study of the charmonium spectrum in moving frames.



قيم البحث

اقرأ أيضاً

We report recent efforts by CLS to generate an ensemble with physical light- and strange-quark masses in a lattice volume of 192x96^3 at $beta=3.55$ corresponding to a lattice spacing of 0.064 fm. This ensemble is being generated as part of the CLS 2 +1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0.039 fm to 0.086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulations. We then proceed to discuss the thermalization strategy employed for the generation of the physical quark-mass ensemble and present first results for some simple observables. Challenges encountered in the simulation are highlighted.
174 - X. Liao , T. Manke 2002
We present our final results for the excited charmonium spectrum from a quenched calculation using a fully relativistic anisotropic lattice QCD action. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with $J^{PC } = 1^{-+}, 0^{+-}, 2^{+-}$) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. We convert our results in lattice units to physical values using lattice scales set by the $^1P_1-1S$ splitting. The lowest lying exotic hybrid $1^{-+}$ lies at 4.428(41) GeV, slightly above the $D^{**}D$ (S+P wave) threshold of 4.287 GeV. Another two exotic hybrids $0^{+-}$ and $2^{+-}$ are determined to be 4.70(17) GeV and 4.895(88) GeV, respectively. Our finite volume analysis confirms that our lattices are large enough to accommodate all the excited states reported here.
Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm), with a non-physical pio n mass of $m_{pi} approx$ 545 MeV. The highest temperature studied is approximately $1.4 T_c$. Up to this temperature no significant variation of the spectral function is seen in the pseudoscalar channel. The vector channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega>0. These results are in accord with previous calculations using the quenched approximation.
The charmonium-nucleon interaction is studied by the time-dependent HAL QCD method. We use a larger lattice volume and the relativistic heavy quark action for charm quark to obtain less systematic errors than those in our previous study. As a result, the sizable J/$psi$N hyperfine splitting is observed, indicating that the spin-spin interaction is important to understand this system quantitatively. No J/$psi$N or $eta_c$N bound state is observed below the thresholds as in the previous results.
We present preliminary results on the electromagnetic form factors and axial charge of the nucleon from ensembles generated by the CLS effort with $N_mathrm{f}=2+1$ flavours of non-perturbatively $mathrm{O}(a)$-improved Wilson fermions and open tempo ral boundary conditions. Systematic effects due to excited-state contamination are accounted for using both two-state fits and the method of summed operator insertions. This exploratory analysis demonstrates the viability of obtaining precision baryon observables with $N_mathrm{f}=2+1$ flavours of Wilson fermions on fine lattices, aiming towards controlled chiral and continuum limits in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا