ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial Velocity Survey of Nearby OB Stars

83   0   0.0 ( 0 )
 نشر من قبل Takuma Suda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the current status of the radial velocity monitoring of nearby OB stars to look for binaries with small mass ratios. The combined data of radial velocities using the domestic 1-2 m-class telescopes seems to confirm the variations of radial velocities in a few weeks for four out of ten target single-lined spectroscopic binaries. More data are needed to estimate the exact periods and mass distributions.



قيم البحث

اقرأ أيضاً

We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra, and compared to direct visu al inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ~80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 year are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.
Under certain conditions, stellar radial velocities can be determined from astrometry, without any use of spectroscopy. This enables us to identify phenomena, other than the Doppler effect, that are displacing spectral lines. The change of stellar pr oper motions over time (perspective acceleration) is used to determine radial velocities from accurate astrometric data, which are now available from the Gaia and Hipparcos missions. Positions and proper motions at the epoch of Hipparcos are compared with values propagated back from the epoch of the Gaia Early Data Release 3. This propagation depends on the radial velocity, which obtains its value from an optimal fit assuming uniform space motion relative to the solar system barycentre. For 930 nearby stars we obtain astrometric radial velocities with formal uncertainties better than 100 km/s; for 55 stars the uncertainty is below 10 km/s, and for seven it is below 1 km/s. Most stars that are not components of double or multiple systems show good agreement with available spectroscopic radial velocities. Astrometry offers geometric methods to determine stellar radial velocity, irrespective of complexities in stellar spectra. This enables us to segregate wavelength displacements caused by the radial motion of the stellar centre-of-mass from those induced by other effects, such as gravitational redshifts in white dwarfs.
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting ne ar orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 21 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 d and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity - period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
Dwarf carbon (dC) stars, main sequence stars showing carbon molecular bands, were initially thought to be an oxymoron since only AGB stars dredge carbon into their atmospheres. Mass transfer from a former AGB companion that has since faded to a white dwarf seems the most likely explanation. Indeed, a few types of giants known to show anomalous abundances --- notably, the CH, Ba and CEMP-s stars --- are known to have a high binary frequency. The dC stars may be the enhanced-abundance progenitors of most, if not all, of these systems, but this requires demonstrating a high binary frequency for dCs. Here, for a sample of 240 dC stars targeted for repeat spectroscopy by the SDSS-IVs Time Domain Spectroscopic Survey, we analyze radial velocity variability to constrain the binary frequency and orbital properties. A handful of dC systems show large velocity variability ($>$100 km s$^{-1}$). We compare the dCs to a control sample with a similar distribution of magnitude, color, proper motion, and parallax. Using MCMC methods, we use the measured $Delta$RV distribution to estimate the binary fraction and the separation distribution assuming both a unimodal and bimodal distribution. We find the dC stars have an enhanced binary fraction of 95%, consistent with them being products of mass transfer. These models result in mean separations of less than 1 AU corresponding to periods on the order of 1 year. Our results support the conclusion that dC stars form from close binary systems via mass transfer.
We present new results from a radial velocity study of six bright OB stars with little or no prior measurements. One of these, HD 45314, may be a long-period binary, but the velocity variations of this Be star may be related to changes in its circums tellar disk. Significant velocity variations were also found for HD 60848 (possibly related to nonradial pulsations) and HD 61827 (related to wind variations). The other three targets, HD 46150, HD 54879, and HD 206183, are constant velocity objects, but we note that HD 54879 has H$alpha$ emission that may originate from a binary companion. We illustrate the average red spectrum of each target.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا