ترغب بنشر مسار تعليمي؟ اضغط هنا

Jet substructure modification in a QGP from a multi-scale description of jet evolution with JETSCAPE

127   0   0.0 ( 0 )
 نشر من قبل Yasuki Tachibana
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The modification of jet substructure in relativistic heavy-ion collisions is studied using JETSCAPE, a publicly available software package containing a framework for Monte Carlo event generators. Multi-stage jet evolution in JETSCAPE provides an integrated description of jet quenching by combining multiple models, with each becoming active at a different stage of the parton shower evolution. Jet substructure modification due to different aspects of jet quenching is studied using jet shape and jet fragmentation observables. Various combinations of jet energy loss models are exploed, with medium background provided by (2 + 1)-D VISHNU with TRENTo+freestreaming initial conditions. Results reported here are from simulations performed within JETSCAPE framework.



قيم البحث

اقرأ أيضاً

331 - C. Park , A. Angerami , S. A. Bass 2019
The JETSCAPE Collaboration has recently announced the first release of the JETSCAPE package that provides a modular, flexible, and extensible Monte Carlo event generator. This innovative framework makes it possible to perform a comprehensive study of multi-stage high-energy jet evolution in the Quark-Gluon Plasma. In this work, we illustrate the performance of the event generator for different algorithmic approaches to jet energy loss, and reproduce the measurements of several jet and hadron observables as well as correlations between the hard and soft sector. We also carry out direct comparisons between different approaches to energy loss to study their sensitivity to those observables.
The modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte-Carlo event generators (LBT, MATTER, MARTINI). Each event generator contains a different set of assumptions regarding the en ergy and virtuality of the partons within a jet versus the energy scale of the medium, and hence, applies to a different epoch in the space-time history of the jet evolution. For the first time, modeling is developed where a jet may sequentially transition from one generator to the next, on a parton-by-parton level, providing a detailed simulation of the space-time evolution of medium modified jets over a much broader dynamic range than has been attempted previously in a single calculation. Comparisons are carried out for different observables sensitive to jet quenching, including the parton fragmentation function and the azimuthal distribution of jet energy around the jet axis. The effect of varying the boundary between different generators is studied and a theoretically motivated criterion for the location of this boundary is proposed. The importance of such an approach with coupled generators to the modeling of jet quenching is discussed.
We present a jet quenching model within a unified multi-stage framework and demonstrate for the first time a simultaneous description of leading hadrons, inclusive jets, and elliptic flow observables which spans multiple centralities and collision en ergies. This highlights one of the major successes of the JETSCAPE framework in providing a tool for setting up an effective parton evolution that includes a high-virtuality radiation dominated energy loss phase (MATTER), followed by a low-virtuality scattering dominated (LBT) energy loss phase. Measurements of jet and charged-hadron $R_{AA}$ set strong constraints on the jet quenching model. Jet-medium response is also included through a weakly-coupled transport description.
We have implemented the LPM effect into a microscopic transport model with partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that modifies the emis sion of radiation in the presence of a dense medium. In QCD this results in a quadratic length dependence for radiative energy loss. This is an important effect for the modification of jets by their passage through the QGP. We verify the leading parton energy loss in the model against the leading order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result. We apply our model to the recent observations of the modification of di-jets at the LHC.
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out. The evolution of bulk medium used in the study for parton propagation was given by 2+1D or 3+1D hydrodynamic models which are also constrained by experimental data on bulk hadron spectra. Values for the jet transport parameter $hat q$ at the center of the most central heavy-ion collisions are extracted or calculated within each model, with parameters for the medium properties that are constrained by experimental data on the hadron suppression factor $R_{AA}$. For a quark with initial energy of 10 GeV we find that $hat qapprox 1.2 pm 0.3$ GeV$^2$/fm at an initial time $tau_0=0.6$ fm/$c$ in Au+Au collisions at $sqrt{s}=200$ GeV/n and $hat qapprox 1.9 pm 0.7 $ GeV$^2$/fm in Pb+Pb collisions at $sqrt{s}=2.76 $ TeV/n. Compared to earlier studies, these represent significant convergence on values of the extracted jet transport parameter, reflecting recent advances in theory and the availability of new experiment data from the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا