ترغب بنشر مسار تعليمي؟ اضغط هنا

Specification-Guided Safety Verification for Feedforward Neural Networks

311   0   0.0 ( 0 )
 نشر من قبل Weiming Xiang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a specification-guided safety verification method for feedforward neural networks with general activation functions. As such feedforward networks are memoryless, they can be abstractly represented as mathematical functions, and the reachability analysis of the neural network amounts to interval analysis problems. In the framework of interval analysis, a computationally efficient formula which can quickly compute the output interval sets of a neural network is developed. Then, a specification-guided reachability algorithm is developed. Specifically, the bisection process in the verification algorithm is completely guided by a given safety specification. Due to the employment of the safety specification, unnecessary computations are avoided and thus the computational cost can be reduced significantly. Experiments show that the proposed method enjoys much more efficiency in safety verification with significantly less computational cost.



قيم البحث

اقرأ أيضاً

Neural networks have been widely used to solve complex real-world problems. Due to the complicate, nonlinear, non-convex nature of neural networks, formal safety guarantees for the output behaviors of neural networks will be crucial for their applica tions in safety-critical systems.In this paper, the output reachable set computation and safety verification problems for a class of neural networks consisting of Rectified Linear Unit (ReLU) activation functions are addressed. A layer-by-layer approach is developed to compute output reachable set. The computation is formulated in the form of a set of manipulations for a union of polyhedra, which can be efficiently applied with the aid of polyhedron computation tools. Based on the output reachable set computation results, the safety verification for a ReLU neural network can be performed by checking the intersections of unsafe regions and output reachable set described by a union of polyhedra. A numerical example of a randomly generated ReLU neural network is provided to show the effectiveness of the approach developed in this paper.
We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neu ral networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) -- structured networks with MLP modules -- have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently diverse. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings.
Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
We study probabilistic safety for Bayesian Neural Networks (BNNs) under adversarial input perturbations. Given a compact set of input points, $T subseteq mathbb{R}^m$, we study the probability w.r.t. the BNN posterior that all the points in $T$ are m apped to the same region $S$ in the output space. In particular, this can be used to evaluate the probability that a network sampled from the BNN is vulnerable to adversarial attacks. We rely on relaxation techniques from non-convex optimization to develop a method for computing a lower bound on probabilistic safety for BNNs, deriving explicit procedures for the case of interval and linear function propagation techniques. We apply our methods to BNNs trained on a regression task, airborne collision avoidance, and MNIST, empirically showing that our approach allows one to certify probabilistic safety of BNNs with millions of parameters.
104 - Bing Sun , Jun Sun , Ting Dai 2021
Fairness is crucial for neural networks which are used in applications with important societal implication. Recently, there have been multiple attempts on improving fairness of neural networks, with a focus on fairness testing (e.g., generating indiv idual discriminatory instances) and fairness training (e.g., enhancing fairness through augmented training). In this work, we propose an approach to formally verify neural networks against fairness, with a focus on independence-based fairness such as group fairness. Our method is built upon an approach for learning Markov Chains from a user-provided neural network (i.e., a feed-forward neural network or a recurrent neural network) which is guaranteed to facilitate sound analysis. The learned Markov Chain not only allows us to verify (with Probably Approximate Correctness guarantee) whether the neural network is fair or not, but also facilities sensitivity analysis which helps to understand why fairness is violated. We demonstrate that with our analysis results, the neural weights can be optimized to improve fairness. Our approach has been evaluated with multiple models trained on benchmark datasets and the experiment results show that our approach is effective and efficient.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا