ترغب بنشر مسار تعليمي؟ اضغط هنا

A High-Resolution, Dust-Selected Molecular Cloud Catalogue of M33, the Triangulum Galaxy

100   0   0.0 ( 0 )
 نشر من قبل Thomas Williams
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalogue of Giant Molecular Clouds (GMCs) in M33, extracted from cold dust continuum emission. Our GMCs are identified by computing dendrograms. We measure the spatial distribution of these clouds, and characterise their dust properties. Combining these measured properties with CO(J=2-1) and 21cm HI data, we calculate the gas-to-dust ratio (GDR) of these clouds, and from this compute a total cloud mass. In total, we find 165 GMCs with cloud masses in the range of 10$^4$-10$^7$ M$_odot$. We find that radially, $log_{10}(mathrm{GDR}) = -0.043(pm0.038) ,mathrm{R [kpc]} + 1.88(pm0.15)$, a much lower GDR than found in the Milky Way, and a correspondingly higher $alpha_{rm CO}$ factor. The mass function of these clouds follows a slope proportional to M$^{-2.84}$, steeper than many previous studies of GMCs in local galaxies, implying that M33 is poorer at forming massive clouds than other nearby spirals. Whilst we can rule out interstellar pressure as the major contributing factor, we are unable to disentangle the relative effects of metallicity and HI velocity dispersion. We find a reasonably featureless number density profile with galactocentric radius, and weak correlations between galactocentric radius and dust temperature/mass. These clouds are reasonably consistent with Larsons scaling relationships, and many of our sources are co-spatial with earlier CO studies. Massive clouds are identified at large galactocentric radius, unlike in these earlier studies, perhaps indicating a population of CO-dark gas dominated clouds at these larger distances.



قيم البحث

اقرأ أيضاً

218 - S. Komugi , T. Tosaki , K. Kohno 2011
We present wide-field 1.1 mm continuum imaging of the nearby spiral galaxy M 33, conducted with the AzTEC bolometer camera on ASTE. We show that the 1.1 mm flux traces the distribution of dust with T ~20 K. Combined with far-infrared imaging at 160um , we derive the dust temperature distribution out to a galactic radius of ~7 kpc with a spatial resolution of ~100 parsecs. Although the 1.1 mm flux is observed predominantly near star forming regions, we find a smooth radial temperature gradient declining from ~20 K to ~13 K, consistent with recent results from the Herschel satellite. Further comparison of individual regions show a strong correlation between the cold dust temperature and the Ks band brightness, but not with the ionizing flux. The observed results imply that the dominant heating source of cold dust at few hundred parsec scales are due to the non-OB stars, even when associated with star forming regions.
The statistical description of Giant Molecular Cloud (GMC) properties relies heavily on the performance of automatic identification algorithms, which are often seriously affected by the survey design. The algorithm we designed, SCIMES (Spectral Clust ering for Interstellar Molecular Emission Segmentation), is able to overcome some of these limitations by considering the cloud segmentation problem in the broad framework of the graph theory. The application of the code on the CO(3-2) High Resolution Survey (COHRS) data allowed for a robust decomposition of more than 12,000 objects in the Galactic Plane. Together with the wealth of Galactic Plane surveys of the recent years, this approach will help to open the door to a future, systematic cataloging of all discrete molecular features of our own Galaxy.
We present a high-sensitivity ($1sigma<1.6~mathrm{mJy~beam^{-1}}$) continuum observation in a 343 arcmin$^2$ area of the northeast region in the Small Magellanic Cloud at a wavelength of 1.1 mm, conducted using the AzTEC instrument on the ASTE telesc ope. In the observed region, we identified 20 objects by contouring $10sigma$ emission. Through spectral energy distribution (SED) analysis using 1.1 mm, $Herschel$, and $Spitzer$ data, we estimated the gas masses of $5times 10^3-7times 10^4~mathrm{M_odot}$, assuming a gas-to-dust ratio of 1000. Dust temperature and the index of emissivity were also estimated as $18-33$ K and $0.9-1.9$, respectively, which are consistent with previous low resolution studies. The relation between dust temperature and the index of emissivity shows a weak negative linear correlation. We also investigated five CO-detected dust-selected clouds in detail. The total gas masses were comparable to those estimated from the Mopra CO data, indicating that the assumed gas-to-dust ratio of 1000 and the $X_mathrm{CO}$ factor of $1times10^{21}~mathrm{cm^{-2}~(K~km~s^{-1})^{-1}}$, with uncertainties of a factor of 2, are reliable for the estimation of the gas masses of molecular or dust-selected clouds. Dust column density showed good spatial correlation with CO emission, except for an object that associates with bright young stellar objects. The $8~mathrm{mu m}$ filamentary and clumpy structures also showed similar spatial distribution with the CO emission and dust column density, supporting the fact that polycyclic aromatic hydrocarbon emissions arise from the surfaces of dense gas and dust clouds.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin g $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
We report on a multi parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M33. A catalog of GMCs identifed in 12CO(J=3-2) was used to compile associated 12CO(J=1-0), dust, stellar mass and star formation rate. Each of the 5 8 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components PC1 and PC2 which retain 75% of the information in the original dataset. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (<10Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower ISM content and star formation activity compared to intermediate age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ~10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt Kennicutt relation with the molecular gas term substituted by dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا