ترغب بنشر مسار تعليمي؟ اضغط هنا

Cascading Constraints from Neutrino Emitting Blazars: The case of TXS 0506+056

75   0   0.0 ( 0 )
 نشر من قبل Anita Reimer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a procedure to generally constrain the environments of neutrino-producing sites in photomeson production models of jetted Active Galactic Nuclei (AGN) where any origin of the dominant target photon field can be accommodated. For this purpose we reconstruct the minimum target photon spectrum required to produce the (observed) neutrino spectrum, and derive the distributions of all corresponding secondary particles. These initiate electromagnetic cascades with an efficiency that is linked to the neutrino production rate. The derived photon spectra represent the minimum radiation emerging from the source that is strictly associated with the photo-hadronically produced neutrinos. Using the 2014-15 neutrino spectrum observed by IceCube from TXS 0506+056, we conduct a comprehensive study of these cascade spectra and compare them to the simultaneous multi-wavelength emission. For this set of observations, photopion production from a co-spatially produced (co-moving) photon target can be ruled out as well as a setup where synchrotron or Compton-synchrotron supported cascades on a stationary (AGN rest frame) target photon field operate in this source. However, a scenario where Compton-driven cascades develop in the stationary soft-X-ray photon target which photo-hadronically produced the observed neutrinos appears feasible with required proton kinetic jet powers near the Eddington limit. The source is then found to produce neutrinos inefficiently, and emits GeV photons significantly below the observed Fermi-LAT-flux. Hence, the neutrinos and the bulk of the gamma rays observed in 2014/2015 from TXS 0506+056 cannot have been initiated by the same process.



قيم البحث

اقرأ أيضاً

TXS 0506+056 is a blazar that has been recently identified as the counterpart of the neutrino event IceCube-170922A. Understanding blazar type of TXS 0506+056 is important to constrain the neutrino emission mechanism, but the blazar nature of TXS 050 6+056 is still uncertain. As an attempt to understand the nature of TXS 0506+056, we report the medium-band observation results of TXS 0506+056, covering the wavelength range of 0.575 to 1.025 $mu$m. The use of the medium-band filters allow us to examine if there were any significant changes in its spectral shapes over the course of one month and give a better constraint on the peak frequency of synchrotron radiation with quasi-simultaneous datasets. The peak frequency is found to be $10^{14.28}$ Hz, and our analysis shows that TXS 0506+056 is not an outlier from the blazar sequence. As a way to determine the blazar type, we also analyzed if TXS 0506+056 is bluer-when-brighter (BL Lac type and some flat spectrum radio quasars, FSRQs) or redder-when-brighter (found only in some FSRQs). Even though we detect no significant variability in the spectral shape larger than observational error during our medium-band observation period, the comparison with a dataset taken at 2012 shows a possible redder-when-brighter behavior of FSRQs. Our results demonstrate that medium-band observations with small to moderate-sized telescopes can be an effective way to trace the spectral evolution of transients such as TXS 0506+056.
For the first time since the discovery of high-energy cosmic neutrinos by IceCube, a multimessenger campaign identified a distant gamma ray blazar, TXS 0506+056, as the source of a high-energy neutrino. The extraordinary brightness of the blazar desp ite its distance suggests that it may belong to a special class of sources that produce cosmic rays. Moreover, over the last 10 years of data, the high-energy neutrino flux from the source is dominated by a previous neutrino flare in 2014, which implies that flaring sources strongly contribute to the cosmic ray flux. We investigate the contribution of this subclass of flaring blazars to the high-energy neutrino flux and examine its connection to the very high energy cosmic ray observations. We also study the high energy gamma ray emission accompanying the neutrino flare and show that the sources must be more efficient neutrino than gamma ray emitters. This conclusion is supported by the gamma-ray observations during the 2014 neutrino flare.
109 - M. Cerruti , A. Zech , C. Boisson 2018
While blazars have long been one of the candidates in the search for the origin of ultra-high energy cosmic rays and astrophysical neutrinos, the BL Lac object TXS 0506+056 is the first extragalactic source that is correlated with some confidence wit h a high-energy neutrino event recorded with IceCube. At the time of the IceCube event, the source was found in a high state in gamma-rays with Fermi-LAT and MAGIC. We have explored in detail the parameter space of a lepto-hadronic radiative model, assuming a single emitting region inside the relativistic jet. We present the complete range of possible solutions for the physical conditions of the emitting region and its particle population. For each solution we compute the expected neutrino rate, and discuss the impact of this event on our general understanding of emission processes in blazars.
The IceCube collaboration reported a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 0506+56 during a $sim$6 month period in 2014-2015, as well as the ($sim3sigma$) detection of a high-energy muon neutrino during a n electromagnetic flare in 2017. We explore the possibility that the 2014-2015 neutrino excess and the 2017 multi-messenger flare are both explained in a common physical framework that relies on the emergence of a relativistic neutral beam in the blazar jet due to interactions of accelerated cosmic rays (CRs) with photons. We demonstrate that the neutral beam model provides an explanation for the 2014-2015 neutrino excess without violating X-ray and $gamma$-ray constraints, and also yields results consistent with the detection of one high-energy neutrino during the 2017 flare. If both neutrino associations with TXS 05065+056 are real, our model requires that (i) the composition of accelerated CRs is light, with a ratio of helium nuclei to protons $gtrsim5$, (ii) a luminous external photon field ($sim 10^{46}$ erg s$^{-1}$) variable (on year-long timescales) is present, and (iii) the CR injection luminosity as well as the properties of the dissipation region (i.e., Lorentz factor, magnetic field, and size) vary on year-long timescales.
The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses the information from the IceCube time-dependent analysis reporting a bursting activity centered on December 13, 2014, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list, a smaller p-value had been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا