ﻻ يوجد ملخص باللغة العربية
By moving a depth sensor around a room, we compute a 3D CAD model of the environment, capturing the room shape and contents such as chairs, desks, sofas, and tables. Rather than reconstructing geometry, we match, place, and align each object in the scene to thousands of CAD models of objects. In addition to the fully automatic system, the key technical contribution is a novel approach for aligning CAD models to 3D scans, based on deep reinforcement learning. This approach, which we call Learning-based ICP, outperforms prior ICP methods in the literature, by learning the best points to match and conditioning on object viewpoint. LICP learns to align using only synthetic data and does not require ground truth annotation of object pose or keypoint pair matching in real scene scans. While LICP is trained on synthetic data and without 3D real scene annotations, it outperforms both learned local deep feature matching and geometric based alignment methods in real scenes. The proposed method is evaluated on real scenes datasets of SceneNN and ScanNet as well as synthetic scenes of SUNCG. High quality results are demonstrated on a range of real world scenes, with robustness to clutter, viewpoint, and occlusion.
The goal of the emph{alignment problem} is to align a (given) point cloud $P = {p_1,cdots,p_n}$ to another (observed) point cloud $Q = {q_1,cdots,q_n}$. That is, to compute a rotation matrix $R in mathbb{R}^{3 times 3}$ and a translation vector $t in
The technological advancement and sophistication in cameras and gadgets prompt researchers to have focus on image analysis and text understanding. The deep learning techniques demonstrated well to assess the potential for classifying text from natura
Retinal degenerative diseases cause profound visual impairment in more than 10 million people worldwide, and retinal prostheses are being developed to restore vision to these individuals. Analogous to cochlear implants, these devices electrically sti
Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph
Contrastive self-supervised learning has shown impressive results in learning visual representations from unlabeled images by enforcing invariance against different data augmentations. However, the learned representations are often contextually biase