ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Deep Learning at the Edge: A Novel Proactive and Cooperative Caching Framework for Mobile Edge Networks

80   0   0.0 ( 0 )
 نشر من قبل Yuris Mulya Saputra
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter proposes two novel proactive cooperative caching approaches using deep learning (DL) to predict users content demand in a mobile edge caching network. In the first approach, a (central) content server takes responsibilities to collect information from all mobile edge nodes (MENs) in the network and then performs our proposed deep learning (DL) algorithm to predict the content demand for the whole network. However, such a centralized approach may disclose the private information because MENs have to share their local users data with the content server. Thus, in the second approach, we propose a novel distributed deep learning (DDL) based framework. The DDL allows MENs in the network to collaborate and exchange information to reduce the error of content demand prediction without revealing the private information of mobile users. Through simulation results, we show that our proposed approaches can enhance the accuracy by reducing the root mean squared error (RMSE) up to 33.7% and reduce the service delay by 36.1% compared with other machine learning algorithms.



قيم البحث

اقرأ أيضاً

Notwithstanding the significant research effort Network Function Virtualization (NFV) architectures received over the last few years little attention has been placed on optimizing proactive caching when considering it as a service chain. Since cachin g of popular content is envisioned to be one of the key technologies in emerging 5G networks to increase network efficiency and overall end user perceived quality of service we explicitly consider in this paper the interplay and subsequent optimization of caching based VNF service chains. To this end, we detail a novel mathematical programming framework tailored to VNF caching chains and detail also a scale-free heuristic to provide competitive solutions for large network instances since the problem itself can be seen as a variant of the classical NP-hard Uncapacitated Facility Location (UFL) problem. A wide set of numerical investigations are presented for characterizing the attainable system performance of the proposed schemes.
Mobile networks are experiencing tremendous increase in data volume and user density. An efficient technique to alleviate this issue is to bring the data closer to the users by exploiting the caches of edge network nodes, such as fixed or mobile acce ss points and even user devices. Meanwhile, the fusion of machine learning and wireless networks offers a viable way for network optimization as opposed to traditional optimization approaches which incur high complexity, or fail to provide optimal solutions. Among the various machine learning categories, reinforcement learning operates in an online and autonomous manner without relying on large sets of historical data for training. In this survey, reinforcement learning-aided mobile edge caching is presented, aiming at highlighting the achieved network gains over conventional caching approaches. Taking into account the heterogeneity of sixth generation (6G) networks in various wireless settings, such as fixed, vehicular and flying networks, learning-aided edge caching is presented, departing from traditional architectures. Furthermore, a categorization according to the desirable performance metric, such as spectral, energy and caching efficiency, average delay, and backhaul and fronthaul offloading is provided. Finally, several open issues are discussed, targeting to stimulate further interest in this important research field.
We investigate a cooperative federated learning framework among devices for mobile edge computing, named CFLMEC, where devices co-exist in a shared spectrum with interference. Keeping in view the time-average network throughput of cooperative federat ed learning framework and spectrum scarcity, we focus on maximize the admission data to the edge server or the near devices, which fills the gap of communication resource allocation for devices with federated learning. In CFLMEC, devices can transmit local models to the corresponding devices or the edge server in a relay race manner, and we use a decomposition approach to solve the resource optimization problem by considering maximum data rate on sub-channel, channel reuse and wireless resource allocation in which establishes a primal-dual learning framework and batch gradient decent to learn the dynamic network with outdated information and predict the sub-channel condition. With aim at maximizing throughput of devices, we propose communication resource allocation algorithms with and without sufficient sub-channels for strong reliance on edge servers (SRs) in cellular link, and interference aware communication resource allocation algorithm for less reliance on edge servers (LRs) in D2D link. Extensive simulation results demonstrate the CFLMEC can achieve the highest throughput of local devices comparing with existing works, meanwhile limiting the number of the sub-channels.
Crowdsourced mobile edge caching and sharing (Crowd-MECS) is emerging as a promising content delivery paradigm by employing a large crowd of existing edge devices (EDs) to cache and share popular contents. The successful technology adoption of Crowd- MECS relies on a comprehensive understanding of the complicated economic interactions and strategic decision-making of different stakeholders. In this paper, we focus on studying the economic and strategic interactions between one content provider (CP) and a large crowd of EDs, where the EDs can decide whether to cache and share contents for the CP, and the CP can decide to share a certain revenue with EDs as the incentive of caching and sharing contents. We formulate such an interaction as a two-stage Stackelberg game. In Stage I, the CP aims to maximize its own profit by deciding the ratio of revenue shared with EDs. In Stage II, EDs aim to maximize their own payoffs by choosing to be agents who cache and share contents, and meanwhile gain a certain revenue from the CP, or requesters who do not cache but request contents in the on-demand fashion. We first analyze the EDs best responses and prove the existence and uniqueness of the equilibrium in Stage II by using the non-atomic game theory. Then, we identify the piece-wise structure and the unimodal feature of the CPs profit function, based on which we design a tailored low-complexity one-dimensional search algorithm to achieve the optimal revenue sharing ratio for the CP in Stage I. Simulation results show that both the CPs profit and the EDs total welfare can be improved significantly (e.g., by 120% and 50%, respectively) by using the proposed Crowd-MECS, comparing with the Non-MEC system where the CP serves all EDs directly.
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl oud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the In-Edge AI framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. In-Edge AI is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of In-Edge AI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا