ﻻ يوجد ملخص باللغة العربية
This letter proposes two novel proactive cooperative caching approaches using deep learning (DL) to predict users content demand in a mobile edge caching network. In the first approach, a (central) content server takes responsibilities to collect information from all mobile edge nodes (MENs) in the network and then performs our proposed deep learning (DL) algorithm to predict the content demand for the whole network. However, such a centralized approach may disclose the private information because MENs have to share their local users data with the content server. Thus, in the second approach, we propose a novel distributed deep learning (DDL) based framework. The DDL allows MENs in the network to collaborate and exchange information to reduce the error of content demand prediction without revealing the private information of mobile users. Through simulation results, we show that our proposed approaches can enhance the accuracy by reducing the root mean squared error (RMSE) up to 33.7% and reduce the service delay by 36.1% compared with other machine learning algorithms.
Notwithstanding the significant research effort Network Function Virtualization (NFV) architectures received over the last few years little attention has been placed on optimizing proactive caching when considering it as a service chain. Since cachin
Mobile networks are experiencing tremendous increase in data volume and user density. An efficient technique to alleviate this issue is to bring the data closer to the users by exploiting the caches of edge network nodes, such as fixed or mobile acce
We investigate a cooperative federated learning framework among devices for mobile edge computing, named CFLMEC, where devices co-exist in a shared spectrum with interference. Keeping in view the time-average network throughput of cooperative federat
Crowdsourced mobile edge caching and sharing (Crowd-MECS) is emerging as a promising content delivery paradigm by employing a large crowd of existing edge devices (EDs) to cache and share popular contents. The successful technology adoption of Crowd-
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl