ﻻ يوجد ملخص باللغة العربية
We introduce a new quantile analysis strategy to study the modification of jets as they traverse through a droplet of quark-gluon plasma. To date, most jet modification studies have been based on comparing the jet properties measured in heavy-ion collisions to a proton-proton baseline at the same reconstructed jet transverse momentum ($p_T$). It is well known, however, that the quenching of jets from their interaction with the medium leads to a migration of jets from higher to lower $p_T$, making it challenging to directly infer the degree and mechanism of jet energy loss. Our proposed quantile matching procedure is inspired by (but not reliant on) the approximate monotonicity of energy loss in the jet $p_T$. In this strategy, jets in heavy-ion collisions ordered by $p_T$ are viewed as modifi
The transverse momentum spectra of different types of particles produced in central and peripheral gold-gold (Au-Au) and (inelastic) proton-proton ($pp$) collisions at the Relativistic Heavy Ion Collider (RHIC), as well as in central and peripheral l
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of
We present results on Zjj production via double parton scattering in pA collisions at the LHC. We perform the analysis at leading and next-leading order accuracy with different sets of cuts on jet transverse momenta and accounting for the single part
We analyse the transverse momentum ($p_{rm T}$)-spectra as a function of charged-particle multiplicity at midrapidity ($|y| < 0.5$) for various identified particles such as $pi^{pm}$, $K^{pm}$, $K_S^0$, $p+overline{p}$, $phi$, $K^{*0} + overline {K^{
The transverse momentum (mass) spectra of the multi-strange and non-multi-strange (i.e. other identified) particles in central gold-gold (Au-Au), lead-lead (Pb-Pb), argon-muriate (Ar-KCl) and nickel-nickel (Ni-Ni) collisions over a wide energy range