ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic investigation of chemical abundances derived using IR spectra obtained with GIANO

115   0   0.0 ( 0 )
 نشر من قبل Elisabetta Caffau
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detailed chemical abundances of Galactic stars are needed in order to improve our knowledge of the formation and evolution of our galaxy, the Milky Way. We took advantage of the GIANO archive spectra to select a sample of Galactic disc stars in order to derive their chemical inventory and to compare the abundances we derived from these infrared spectra to the chemical pattern derived from optical spectra. We analysed high-quality spectra of 40 stars observed with GIANO. We derived the stellar parameters from the photometry and the Gaia data-release 2 (DR2) parallax; the chemical abundances were derived with the code MyGIsFOS. For a subsample of stars we compared the chemical pattern derived from the GIANO spectra with the abundances derived from optical spectra. We derived P abundances for all 40 stars, increasing the number of Galactic stars for which phosphorus abundance is known. We could derive abundances of 14 elements, 8 of which are also derived from optical spectra. The comparison of the abundances derived from infrared and optical spectra is very good. The chemical pattern of these stars is the one expected for Galactic disc stars and is in agreement with the results from the literature. GIANO is providing the astronomical community with an extremely useful instrument, able to produce spectra with high resolution and a wide wavelength range in the infrared.



قيم البحث

اقرأ أيضاً

241 - I. Carleo , N. Sanna , R. Gratton 2016
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANOs capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H -magnitudes: for H ~ 5 we obtain an rms scatter of ~ 10 m s-1, while for H ~ 9 the standard deviation increases to ~ 50 - 80 m s-1. The corresponding theoretical error expectations are ~4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
The validity of oxygen and nitrogen abundances derived from the global emission-line spectra of galaxies via the P-method has been investigated using a collection of published spectra of individual HII regions in irregular and spiral galaxies. The co nclusions of Kobulnicky, Kennicutt & Pizagno (1999) that global emission-line spectra can reliably indicate the chemical properties of galaxies has been confirmed. It has been shown that the comparison of the global spectrum of a galaxy with a collection of spectra of individual HII regions can be used to distinguish high and low metallicity objects and to estimate accurate chemical abundances in a galaxy. The oxygen and nitrogen abundances in samples of UV-selected and normal nearby galaxies have been determined. It has been found that the UV-selected galaxies occupy the same area in the N/O -- O/H diagram as individual HII regions in nearby galaxies. Finally, we show that intermediate-redshift galaxies systematically deviate from the metallicity -- luminosity trend of local galaxies.
Based on high resolution, high signal-to-noise (S/N) ratio spectra from Keck/HIRES, we have determined abundances of 20 elements for 18 Ba candidates. The parameter space of these stars are in the range of 4880 $leq$ $rm{T_{eff}}$ $leq$ 6050 K, 2.56 $leq$ log $g$ $leq$ 4.53 dex and -0.27 $leq$ [Fe/H] $leq$ 0.09 dex. It is found that four of them can be identified as Ba stars with [s/Fe] $>$ 0.25 dex (s: Sr, Y, Zr, Ba, La, Ce and Nd), and three of them are newly discovered, which includes two Ba giants (HD 16178 and HD 22233) and one Ba subgiant (HD 2946). Our results show that the abundances of $alpha$, odd and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, Mn, Ni and Cu) for our program stars are similar to those of the thin disk, while the distribution of [hs/ls] (hs: Ba, La, Ce and Nd, ls: Sr, Y and Zr) ratios of our Ba stars is similar to those of the known Ba objects. None of the four Ba stars show clear enhancement in carbon including the known CH subgiant HD 4395. It is found that three of the Ba stars present clear evidences of hosting stellar or sub-stellar companions from the radial velocity data.
We provide a new method to derive heavy element abundances based on the unique suite of nebular lines in the mid- to far-infrared (IR) range. Using grids of photo-ionisation models that cover a wide range in O/H and N/O abundances, and ionisation par ameter, our code HII-Chi-mistry-IR (HCm-IR) provides model-based abundances based on extinction free and temperature insensitive tracers, two significant advantages over optical diagnostics. The code is probed using a sample of 56 galaxies observed with $Spitzer$ and $Herschel$ covering a wide range in metallicity, $7.2 lesssim 12+log(O/H) lesssim 8.9$. The IR model-based metallicities obtained are robust within a scatter of 0.03 dex when the hydrogen recombination lines, which are typically faint transitions in the IR range, are not available. When compared to the optical abundances obtained with the direct method, model-based methods, and strong-line calibrations, HCm-IR estimates show a typical dispersion of ~0.2 dex, in line with previous studies comparing IR and optical abundances, a do not introduce a noticeable systematic above $12+log(O/H) gtrsim 7.6$. This accuracy can be achieved using the lines [SIV]$_{10.5 mu m}$, [SIII]$_{18.7,33.5 mu m}$, [NeIII]$_{15.6 mu m}$ and [NeII]$_{12.8 mu m}$. Additionally, HCm-IR provides an independent N/O measurement when the [OIII]$_{52,88 mu m}$ and [NIII]$_{57 mu m}$ transitions are measured, and therefore the derived abundances in this case do not rely on particular assumptions in the N/O ratio. Large uncertainties (~0.4 dex) may affect the abundance determinations of galaxies at sub- or over-solar metallicities when a solar-like N/O ratio is adopted. Finally, the code has been applied to 8 galaxies located at $1.8 < z < 7.5$ with ground-based detections of far-IR lines redshifted in the submm range, revealing solar-like N/O and O/H abundances in agreement with recent studies.
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attache d to large telescopes and the development of more sophisticated and detailed atomic data calculations and ionization correction factors have helped to raise the number of ionic species studied in photoionized nebulae in the last years, as well as to reduce the uncertainties in the computed abundances. Special attention will be given to the detection of very faint lines such as heavy-element recombination lines of C, N and O in H II regions and planetary nebulae, and collisionally excited lines of neutron-capture elements (Z >30) in planetary nebulae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا