ترغب بنشر مسار تعليمي؟ اضغط هنا

APOGEE [C/N] Abundances Across the Galaxy: Migration and Infall from Red Giant Ages

57   0   0.0 ( 0 )
 نشر من قبل Sten Hasselquist
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present [C/N]-[Fe/H] abundance trends from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, Data Release 14 (DR14), for red giant branch stars across the Milky Way Galaxy (MW, 3 kpc $<$ R $<$ 15 kpc). The carbon-to-nitrogen ratio (often expressed as [C/N]) can indicate the mass of a red giant star, from which an age can be inferred. Using masses and ages derived by Martig et al., we demonstrate that we are able to interpret the DR14 [C/N]-[Fe/H] abundance distributions as trends in age-[Fe/H] space. Our results show that an anti-correlation between age and metallicity, which is predicted by simple chemical evolution models, is not present at any Galactic zone. Stars far from the plane ($|$Z$|$ $>$ 1 kpc) exhibit a radial gradient in [C/N] ($sim$ $-$0.04 dex/kpc). The [C/N] dispersion increases toward the plane ($sigma_{[C/N]}$ = 0.13 at $|$Z$|$ $>$ 1 kpc to $sigma_{[C/N]}$ = 0.18 dex at $|$Z$|$ $<$ 0.5 kpc). We measure a disk metallicity gradient for the youngest stars (age $<$ 2.5 Gyr) of $-$0.060 dex/kpc from 6 kpc to 12 kpc, which is in agreement with the gradient found using young CoRoGEE stars by Anders et al. Older stars exhibit a flatter gradient ($-$0.016 dex/kpc), which is predicted by simulations in which stars migrate from their birth radii. We also find that radial migration is a plausible explanation for the observed upturn of the [C/N]-[Fe/H] abundance trends in the outer Galaxy, where the metal-rich stars are relatively enhanced in [C/N].



قيم البحث

اقرأ أيضاً

We show that the masses of red giant stars can be well predicted from their photospheric carbon and nitrogen abundances, in conjunction with their spectroscopic stellar labels log g, Teff, and [Fe/H]. This is qualitatively expected from mass-dependen t post main sequence evolution. We here establish an empirical relation between these quantities by drawing on 1,475 red giants with asteroseismic mass estimates from Kepler that also have spectroscopic labels from APOGEE DR12. We assess the accuracy of our model, and find that it predicts stellar masses with fractional r.m.s. errors of about 14% (typically 0.2 Msun). From these masses, we derive ages with r.m.s errors of 40%. This empirical model allows us for the first time to make age determinations (in the range 1-13 Gyr) for vast numbers of giant stars across the Galaxy. We apply our model to 52,000 stars in APOGEE DR12, for which no direct mass and age information was previously available. We find that these estimates highlight the vertical age structure of the Milky Way disk, and that the relation of age with [alpha/M] and metallicity is broadly consistent with established expectations based on detailed studies of the solar neighbourhood.
The Hipparcos orbiting observatory has revealed a large number of helium-core-burning clump stars in the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the first dredge-up of standard mo dels. The 12C/13C ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters. In this work we present 12C/13C determinations in a sample of 34 Galactic clump stars as well as abundances of nitrogen, carbon and oxygen. Abundances of carbon were studied using the C2 Swan (0,1) band head at 5635.5 A. The wavelength interval 7980-8130 A with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 A. Compared with the Sun and dwarf stars of the Galactic disk, mean abundances in the investigated clump stars suggest that carbon is depleted by about 0.2 dex, nitrogen is enhanced by 0.2 dex and oxygen is close to abundances in dwarfs. Comparisons to evolutionary models show that the stars fall into two groups: the one is of first ascent giants with carbon isotope ratios altered according to the first dredge-up prediction, and the other one is of helium-core-burning stars with carbon isotope ratios altered by extra mixing. The stars investigated fall to these groups in approximately equal numbers.
We report chemical abundances obtained by SDSS-III/APOGEE for giant stars in five globular clusters located within 2.2 kpc of the Galactic centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, T erzan 5, and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters present a significant spread in the abundances of N, C, Na, and Al, with the usual correlations and anti-correlations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C, and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high- metallicity regime.
The SDSS-III/APOGEE survey operated from 2011-2014 using the APOGEE spectrograph, which collects high-resolution (R~22,500), near-IR (1.51-1.70 microns) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data produ cts that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff, log g, [M/H], [alpha/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; within more limited ranges and at high S/N, it is smaller for some elemental abundances. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1-0.2 dex. Uncertainties may be larger at cooler temperatures (Teff<4000K). Access to the public data release and data products is described, and some guidance for using the data products is provided.
We investigate the properties of the double sequences of the Milky Way discs visible in the [$alpha$/Fe] vs [Fe/H] diagram. In the framework of Galactic formation and evolution, we discuss the complex relationships between age, metallicity, [$alpha$/ Fe], and the velocity components. We study stars with measured chemical, seismic and astrometric properties from the APOGEE survey, the Kepler and Gaia satellites, respectively. We separate the [$alpha$/Fe]-[Fe/H] diagram into 3 stellar populations: the thin disc, the high-$alpha$ metal-poor thick disc and the high-$alpha$ metal-rich thick disc and characterise each of these in the age-chemo-kinematics parameter space. We compare results obtained from different APOGEE data releases and using two recent age determinations. We use the Besanc{c}on Galaxy model (BGM) to highlight selection biases and mechanisms not included in the model. The thin disc exhibits a flat age-metallicity relation while [$alpha$/Fe] increases with stellar age. We confirm no correlation between radial and vertical velocities with [Fe/H], [$alpha$/Fe] and age for each stellar population. Considering both samples, V$_varphi$ decreases with age for the thin disc, while it increases with age for the h$alpha$mp thick disc. Although the age distribution of the h$alpha$mr thick disc is very close to that of the h$alpha$mp thick disc between 7 and 14 Gyr, its kinematics seems to follow that of the thin disc. This feature, not predicted by the hypotheses included in the BGM, suggests a different origin and history for this population. Finally, we show that there is a maximum dispersion of the vertical velocity, $sigma_Z$, with age for the h$alpha$mp thick disc around 8 Gyr. The comparisons with the BGM simulations suggest a more complex chemo-dynamical scheme to explain this feature, most likely including mergers and radial migration effects
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا