ﻻ يوجد ملخص باللغة العربية
The effectiveness of learning in massive open online courses (MOOCs) can be significantly enhanced by introducing personalized intervention schemes which rely on building predictive models of student learning behaviors such as some engagement or performance indicators. A major challenge that has to be addressed when building such models is to design handcrafted features that are effective for the prediction task at hand. In this paper, we make the first attempt to solve the feature learning problem by taking the unsupervised learning approach to learn a compact representation of the raw features with a large degree of redundancy. Specifically, in order to capture the underlying learning patterns in the content domain and the temporal nature of the clickstream data, we train a modified auto-encoder (AE) combined with the long short-term memory (LSTM) network to obtain a fixed-length embedding for each input sequence. When compared with the original features, the new features that correspond to the embedding obtained by the modified LSTM-AE are not only more parsimonious but also more discriminative for our prediction task. Using simple supervised learning models, the learned features can improve the prediction accuracy by up to 17% compared with the supervised neural networks and reduce overfitting to the dominant low-performing group of students, specifically in the task of predicting students performance. Our approach is generic in the sense that it is not restricted to a specific supervised learning model nor a specific prediction task for MOOC learning analytics.
In a Massive Open Online Course (MOOC), predictive models of student behavior can support multiple aspects of learning, including instructor feedback and timely intervention. Ongoing courses, when the student outcomes are yet unknown, must rely on mo
Predictive models -- learned from observational data not covering the complete data distribution -- can rely on spurious correlations in the data for making predictions. These correlations make the models brittle and hinder generalization. One soluti
Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works, and then use this learned model to plan coordinated sequences of actions to bring about desired outcomes. However, learni
Crucial for building trust in deep learning models for critical real-world applications is efficient and theoretically sound uncertainty quantification, a task that continues to be challenging. Useful uncertainty information is expected to have two k