ﻻ يوجد ملخص باللغة العربية
Description of the TAU-4 installation intended for long-term monitoring of the half-life value $T_{1/2}$ of the $^{212}$Po is presented. Natural thorium used as a source of the mothers chain. The methods of measurement and data processing are described. The comparative results of short test measurements carried out in the ground (680 h) and underground (564 h) laboratories are given. Averaged value $T_{1/2}$ =$294.09pm 0.07$ ns of the $^{212}$Po half-life has been found for the ground level data set similar one for the underground data set. The solar-daily variations with amplitudes $A_{So}=(11.7pm 5.2)times10^{-4}$ for the ground data and $A_{So}=(7.5pm 4.1)times10^{-4}$ for the underground one were found in a series of $tau$ values.
The half-life of $^{212}$Po was measured with the highest up-to-date accuracy as $T_{1/2}=295.1(4)$ ns by using thorium-loaded liquid scintillator.
Results of a comparative analysis of the $^{214}$Po ($T_{1/2}= 163.47pm0.03$ $mu$s), $^{213}$Po ($T_{1/2}=3.705 pm 0.001$ $mu$s) and $^{212}$Po ($T_{1/2}=294.09pm0.07$ ns) half-life annular variation parameters are presented. It is shown that two ind
Precise measurement of half-life of $^{212}$Po (one of the daughter nuclides in radioactive chain of $^{232}$Th) was realized by means of liquid scintillator based on toluene doped by complex of thorium and trioctylphosphine oxide with concentration
A device with the parent $^{229}$Th source was constructed to search for variations of the daughter $^{213}$Po half-life ($T_{1/2} = 4.2$ $mu$s). A solar-daily variation with amplitude $A_{So}=(5.3 pm 1.1) times 10^{-4}$, a lunar-daily variation with
Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experime