ترغب بنشر مسار تعليمي؟ اضغط هنا

Constant-mean-curvature Slicing of the Swiss-cheese Universe

75   0   0.0 ( 0 )
 نشر من قبل Chul-Moon Yoo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sequence of Constant-Mean-Curvature(CMC) slices in the Swiss-Cheese(SC) Universe is investigated. We focus on the CMC slices which smoothly connect to the homogeneous time slices in the Einstein-de Sitter region in the SC universe. It is shown that the slices do not pass through the black hole region but white hole region.



قيم البحث

اقرأ أيضاً

We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral actio n of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of a divergent sum which involves the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese Brane-world cosmology. Two different Brane-world cosmologies with black strings h ave been introduced for any cosmological constant $Lambda$ using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the EoS parameter $omega(t)rightarrow -1$ for the current epoch where the redshift $zsimeq 0$. We then used these fine-tuned values to calculate and plot all parameters and energy conditions. The deceleration-acceleration cosmic transition is allowed in both models, and the jerk parameter $jrightarrow 1$ at late-times. Both solutions predict a future dark energy-dominated universe in which $omega=-1$ with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that constructing non-singular and cyclic solutions through certain ansatze in Swiss-cheese Brane-worlds are not possible.
In a recent work, it has been proposed that the recent cosmic passage to a cosmic acceleration era is the result of the existence of small anti-gravity sources in each galaxy and clusters of galaxies. In particular, a swiss-cheese cosmology model whi ch relativistically integrates the contribution of all these anti-gravity sources on galactic scale has been constructed assuming the presence of an infrared fixed point for a scale dependent cosmological constant. The derived cosmological expansion provides explanation for both the fine tuning and the coincidence problem. The present work relaxes the previous assumption on the running of the cosmological constant and allows for a generic scaling around the infrared fixed point. Our analysis reveals in order to produce a cosmic evolution consistent with the best $Lambda$CDM model, the IR-running of the cosmological constant is consistent with the presence of an IR-fixed point.
Swiss cheese sets are compact subsets of the complex plane obtained by deleting a sequence of open disks from a closed disk. Such sets have provided numerous counterexamples in the theory of uniform algebras. In this paper, we introduce a topological space whose elements are what we call abstract Swiss cheeses. Working within this topological space, we show how to prove the existence of classical Swiss cheese sets (as discussed in a paper of Feinstein and Heath from 2010) with various desired properties. We first give a new proof of the Feinstein-Heath classicalisation theorem. We then consider when it is possible to classicalise a Swiss cheese while leaving disks which lie outside a given region unchanged. We also consider sets obtained by deleting a sequence of open disks from a closed annulus, and we obtain an analogue of the Feinstein-Heath theorem for these sets. We then discuss regularity for certain uniform algebras. We conclude with an application of these techniques to obtain a classical Swiss cheese set which has the same properties as a non-classical example of OFarrell (1979).
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter s ector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا