ﻻ يوجد ملخص باللغة العربية
The photon polarization in $D_{(s)} to K_1 (to Kpipi) gamma$ decays can be extracted from an up-down asymmetry in the $K pi pi$ system, along the lines of the method known to $B to K_1 (to Kpipi) gamma$ decays. Charm physics is advantageous as partner decays exist: $D^+ to K_1^+ (to Kpipi) gamma$, which is standard model-like, and $D_s to K_1^+ (to Kpipi) gamma$, which is sensitive to physics beyond the standard model in $|Delta c| =|Delta u|=1$ transitions. The standard model predicts their photon polarizations to be equal up to U-spin breaking corrections, while new physics in the dipole operators can split them apart at order one level. We estimate the proportionality factor in the asymmetry multiplying the polarization parameter from axial vectors $K_1(1270)$ and $K_1(1400)$ to be sizable, up to the few ${cal{O}}(10)%$ range. The actual value of the hadronic factor matters for the experimental sensitivity, but is not needed as an input to perform the null test.
We compute 10 radiative three-body decays of charged charmed mesons $D^+ to P^+ P^0 gamma$ and $D_s to P^+ P^0 gamma$, $P=pi, K$, in leading order QCDF, HH$chi$PT and the soft photon approximation. We work out decay distributions and asymmetries in t
We present a calculation of the form factors, $f_0$ and $f_+$, for the $B_{(s)} to D_{(s)}$ semileptonic decays. Our work uses the MILC $n_f=2+1$ AsqTad configurations with NRQCD and HISQ valence quarks at four values of the momentum transfer $q^2$.
We present a measurement of the $CP$-violating weak mixing phase $phi_s$ using the decay $bar{B}^{0}_{s}to D_{s}^{+}D_{s}^{-}$ in a data sample corresponding to $3.0$ fb$^{-1}$ of integrated luminosity collected with the LHCb detector in $pp$ collisi
Based on the standard model (SM) of particle physics, we study the decays $Lambda_b to Lambda ell^+ ell^-$ in light of the available inputs from lattice and the data from LHCb. We fit the form-factors of this decay mode using the available theory and
Using 586 $textrm{pb}^{-1}$ of $e^{+}e^{-}$ collision data acquired at $sqrt{s}=4.170$ GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of $D_{s}^{*+} to D_{s}^{+} e^{+} e^{-}$ with a significance of