ﻻ يوجد ملخص باللغة العربية
Recent advancements in the area of Computer Vision with state-of-art Neural Networks has given a boost to Optical Character Recognition (OCR) accuracies. However, extracting characters/text alone is often insufficient for relevant information extraction as documents also have a visual structure that is not captured by OCR. Extracting information from tables, charts, footnotes, boxes, headings and retrieving the corresponding structured representation for the document remains a challenge and finds application in a large number of real-world use cases. In this paper, we propose a novel enterprise based end-to-end framework called DeepReader which facilitates information extraction from document images via identification of visual entities and populating a meta relational model across different entities in the document image. The model schema allows for an easy to understand abstraction of the entities detected by the deep vision models and the relationships between them. DeepReader has a suite of state-of-the-art vision algorithms which are applied to recognize handwritten and printed text, eliminate noisy effects, identify the type of documents and detect visual entities like tables, lines and boxes. Deep Reader maps the extracted entities into a rich relational schema so as to capture all the relevant relationships between entities (words, textboxes, lines etc) detected in the document. Relevant information and fields can then be extracted from the document by writing SQL queries on top of the relationship tables. A natural language based interface is added on top of the relationship schema so that a non-technical user, specifying the queries in natural language, can fetch the information with minimal effort. In this paper, we also demonstrate many different capabilities of Deep Reader and report results on a real-world use case.
We present Pix2Prof, a deep learning model that can eliminate any manual steps taken when extracting galaxy profiles. We argue that a galaxy profile of any sort is conceptually similar to a natural language image caption. This idea allows us to lever
We present document domain randomization (DDR), the first successful transfer of convolutional neural networks (CNNs) trained only on graphically rendered pseudo-paper pages to real-world document segmentation. DDR renders pseudo-document pages by mo
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past se
Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human-
Document-level relation extraction (DocRE) aims at extracting the semantic relations among entity pairs in a document. In DocRE, a subset of the sentences in a document, called the evidence sentences, might be sufficient for predicting the relation b