ﻻ يوجد ملخص باللغة العربية
We determine the cosmic expansion rate from supernovae of type Ia to set up a data-based distance measure that does not make assumptions about the constituents of the universe, i.e. about a specific parametrisation of a Friedmann cosmological model. The scale, determined by the Hubble constant $H_0$, is the only free cosmological parameter left in the gravitational lensing formalism. We investigate to which accuracy and precision the lensing distance ratio $D$ is determined from the Pantheon sample. Inserting $D$ and its uncertainty into the lensing equations for given $H_0$, esp. the time-delay equation between a pair of multiple images, allows to determine lens properties, esp. differences in the lensing potential ($Delta phi$), without specifying a cosmological model. We expand the luminosity distances into an analytic orthonormal basis, determine the maximum-likelihood weights for the basis functions by a globally optimal $chi^2$-parameter estimation, and derive confidence bounds by Monte-Carlo simulations. For typical strong lensing configurations between $z=0.5$ and $z=1.0$, $Delta phi$ can be determined with a relative imprecision of 1.7%, assuming imprecisions of the time delay and the redshift of the lens on the order of 1%. With only a small, tolerable loss in precision, the model-independent lens characterisation developed in this paper series can be generalised by dropping the specific Friedmann model to determine $D$ in favour of a data-based distance ratio. Moreover, for any astrophysical application, the approach presented here, provides distance measures for $zle2.3$ that are valid in any homogeneous, isotropic universe with general relativity as theory of gravity.
When light from a distant source object, like a galaxy or a supernova, travels towards us, it is deflected by massive objects that lie on its path. When the mass density of the deflecting object exceeds a certain threshold, multiple, highly distorted
We give a physical interpretation of the formalism intrinsic degeneracies of the gravitational lensing formalism that we derived on a mathematical basis in part IV of this series. We find that all degeneracies occur due to the partition of the mass d
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled gala
Many distant objects can only be detected, or become more scientifically valuable, if they have been highly magnified by strong gravitational lensing. We use EAGLE and BAHAMAS, two recent cosmological hydrodynamical simulations, to predict the probab
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr