ﻻ يوجد ملخص باللغة العربية
We argue that a new type of extremely light axion is generically present in the type IIB part of the string theory landscape. Its mass is suppressed by the third power of the warp factor of a strongly warped region (Klebanov-Strassler throat), suggesting the name thraxion. Our observation is based on the generic presence of several throats sharing the same 2-cycle. This cycle shrinks to zero volume at the end of each throat. It is hence trivial in homology and the corresponding $C_2$ axion is massive. However, the mass is warping-suppressed since, if one were to cut off the strongly warped regions, a proper 2-cycle would re-emerge. Since the kinetic term of the axion is dominated in the UV, an even stronger, quadratic mass suppression results. Moreover, if the axion is excited, the angular modes of the throats backreact. This gives our effective $C_2$ axion a finite monodromy and flattens its potential even further. Eventually, the mass turns out to scale as the third power of the warp factor. We briefly discuss possible implications for phenomenology and potential violations of the Weak Gravity Conjecture for axions. Moreover we identify a mechanism for generating super-Planckian axionic field ranges which we call drifting monodromies. However, in the examples we consider, the potential oscillates on sub-Planckian distances in field space, preventing us from building a natural inflation model on the basis of this idea.
I review a string-inspired cosmological model with gravitational anomalies in its early epochs, which is based on fields from the (bosonic) massless gravitational multiplet of strings, in particular gravitons and Kalb Ramond (KR), string-model indepe
We reconsider entropy arguments which have been previously argued to support the idea that the dark matter constituents are primordial black holes with many solar masses. It has recently been shown that QCD axions which solve the strong CP problem ma
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2ll {cal H}ma$, we h
Black Hole measurements have grown significantly in the new age of gravitation wave astronomy from LIGO observations of binary black hole mergers. As yet unobserved massive ultralight bosonic fields represent one of the most exciting features of Stan
We show that the inclusion of an axion-like effective potential in the construction of a self-gravitating system made of scalar fields leads to a decrease on its compactness when the value of the self-interaction coupling constant is increased. By in