ﻻ يوجد ملخص باللغة العربية
We calculate the contribution from the two-photon exchange on the neutron to the hyperfine splitting of S energy levels. We update the value of the neutron Zemach radius, estimate total recoil and polarizability corrections. The resulting two-photon exchange in electronic atoms exceeds by an order of magnitude the leading Zemach term and has different sign both in electronic and muonic hydrogen.
We evaluate the two-photon exchange corrections to the Lamb shift and hyperfine splitting of S states in electronic hydrogen relying on modern experimental data and present the two-photon exchange on a neutron inside the electronic and muonic atoms.
Two-photon exchange contributions to elastic electron-proton scattering cross sections are evaluated in a simple hadronic model including the finite size of the proton. The corrections are found to be small in magnitude, but with a strong angular dep
We investigate the effect of two-photon exchange processes upon the rms- and Zemach radii extracted from electron-proton scattering. We find that the changes are small and do not help to explain the discrepancy between experimental and calculated HFS in the hydrogen atom.
We discuss the possibility of extracting the neutron-neutron scattering length $a_{nn}$ and effective range $r_{nn}$ from cross section data ($d^2sigma/dM_{nn}/dOmega_pi$), as a function of the $nn$ invariant mass $M_{nn}$, for $pi^+$ photoproduction
We use heavy baryon chiral perturbation theory to evaluate the two-photon exchange corrections to the low-energy elastic lepton-proton scattering at next-to-leading order accuracy, i.e., ${mathcal O}(alpha, M^{-1})$, including a non-zero lepton mass.