ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound States of Pseudo-Dirac Dark Matter

259   0   0.0 ( 0 )
 نشر من قبل Arindam Bhattacharya
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the bound-state spectrum in a simple model of pseudo-Dirac dark matter, and examine how the rate of bound-state formation through radiative capture compares to Sommerfeld-enhanced annihilation. We use this model as an example to delineate the new features induced by the presence of a mass splitting between the dark matter and a nearly-degenerate partner, compared to the case where only a single dark-matter-like state is present. We provide a simple analytic prescription for estimating the spectrum of bound states in systems containing a mass splitting, which in turn allows characterization of the resonances due to near-zero-energy bound states, and validate this estimate both for pseudo-Dirac dark matter and for the more complex case of wino dark matter. We demonstrate that for pseudo-Dirac dark matter the capture rate into deeply bound states is, to a good approximation, simply related to the Sommerfeld enhancement factor.



قيم البحث

اقرأ أيضاً

Displaced vertices are relatively unusual signatures for dark matter searches at the LHC. We revisit the model of pseudo-Dirac dark matter (pDDM), which can accommodate the correct relic density, evade direct detection constraints, and generically pr ovide observable collider signatures in the form of displaced vertices. We use this model as a benchmark to illustrate the general techniques involved in the analysis, the complementarity between monojet and displaced vertex searches, and provide a comprehensive study of the current bounds and prospective reach.
In this paper, we analyze the cosmological evolution, allowed parameter space, and observational prospects for a dark sector consisting of thermally produced pseudo-Dirac fermions with a small mass splitting, coupled to the Standard Model through a d ark photon. This scenario is particularly notable in the context of sub-GeV dark matter, where the mass-off-diagonal leading interaction limits applicability of both CMB energy injection constraints and standard direct detection searches. We present the first general study of the thermal history of pseudo-Dirac DM with splittings from 100 eV to MeV, focusing on the depletion of the heavier excited state abundance via scatterings and decays, and on the distinctive signals arising from its small surviving abundance. We analyze CMB energy injection bounds on both DM annihilation and decay, accelerator-based probes, and new line-like direct-detection signals from the excited DM down-scattering on either nuclei or electrons, as well as future search prospects in each channel. We also comment on the relevance of this signal to the few-keV Xenon1T electron excess and on possible diurnal modulation of this signal, and introduce a signal-strength parametrization to facilitate the comparison of future experimental results to theoretical expectations.
Nuggets---very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force---are a smoking gun signature for Asymmetric Dark Matter (ADM). The cosmology of ADM nugget s is both generic and unique: nuggets feature highly exothermic fusion processes, which can impact the shape of the core in galaxies, as well as give rise to rare dark star formation. We find, considering the properties of nuggets in a generic extended nuclear model with both attractive and repulsive forces, that self-interaction constraints place an upper bound on nugget masses at the freeze-out of synthesis in the ballpark of $M_{rm fo} lesssim 10^{16}$ GeV. We also show that indirect detection strongly constrains models where the scalar mediator binding the nuggets mixes with the Higgs.
Models of Asymmetric Dark Matter (ADM) with a sufficiently attractive and long-range force gives rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profi les and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) non-relativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an ${cal O}(1)$ fraction of the constituents mass, significantly larger than expectations in the non-relativistic case. In a companion paper, we apply our results to synthesis of ADM nuggets in the early Universe.
The small-scale structure problems of the universe can be solved by self-interacting dark matter that becomes strongly interacting at low energies. A particularly predictive model is resonant short-range self-interactions, with a dark-matter mass of about 19 GeV and a large S-wave scattering length of about 17 fm. Such a model makes definite predictions for the few-body physics of weakly bound clusters of the dark-matter particles. We calculate the production of two-body bound clusters by three-body recombination in the early universe under the assumption that the dark matter particles are identical bosons, which is the most favorable case for forming larger clusters. The fraction of dark matter in the form of two-body bound clusters can increase by as much as 4 orders of magnitude when the dark-matter temperature falls below the binding energy, but its present value remains less than 10^(-6).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا