ترغب بنشر مسار تعليمي؟ اضغط هنا

Thin One-Phase almost minimizers

75   0   0.0 ( 0 )
 نشر من قبل Daniela De Silva
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider almost minimizers to the thin-one phase energy functional and we prove optimal regularity of the solution and partial regularity of the free boundary. We thus recover the theory for energy minimizers. Our methods are based on a noninfinitesimal notion of viscosity solutions.



قيم البحث

اقرأ أيضاً

Given a global 1-homogeneous minimizer $U_0$ to the Alt-Caffarelli energy functional, with $sing(F(U_0)) = {0}$, we provide a foliation of the half-space $R^{n} times [0,+infty)$ with dilations of graphs of global minimizers $underline U leq U_0 leq bar U$ with analytic free boundaries at distance 1 from the origin.
The aim of this note is to prove that almost-minimizers of the perimeter are Reifenberg flat, for a very weak notion of minimality. The main observation is that smallness of the excess at some scale implies smallness of the excess at all smaller scales.
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions $ngeq3$ is completely open. In this contex t, axially symmetric solutions are expected to play the same role as Simons cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open. The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of large solutions for the fractional Laplacian, which blow up on the free boundary. On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $nle 5$ is one-dimensional, independently of the parameter $sin (0,1)$.
In this article, we consider and analyse a small variant of a functional originally introduced in cite{BLS,LS} to approximate the (geometric) planar Steiner problem. This functional depends on a small parameter $varepsilon>0$ and resembles the (scala r) Ginzburg-Landau functional from phase transitions. In a first part, we prove existence and regularity of minimizers for this functional. Then we provide a detailed analysis of their behavior as $varepsilonto0$, showing in particular that sublevel sets Hausdorff converge to optimal Steiner sets. Applications to the average distance problem and optimal compliance are also discussed.
We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotr opic. We show that for smooth anisotropies, in the small nonlocality regime, minimizers converge to the Wulff shape in $C^1$-norm and quantify the rate of convergence. We also obtain a quantitative extension of the energy of any minimizer around the energy of a Wulff shape yielding a geometric stability result. For certain crystalline surface tensions we can determine the global minimizer and obtain its exact energy expansion in terms of the nonlocality parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا