ﻻ يوجد ملخص باللغة العربية
The Multigap Resistive Plate Chamber (MRPC) is a gaseous detector; the performance depends very much on the gas mixture as well as the design. MRPCs are used as a timing device in several collider experiments and cosmic ray experiments thanks to the excellent timing performance. The typical gas mixtures of RPC-type detectors at current experiments are based on the gases $rm C_2F_4H_2$ and $rm SF_6$. These gases have very high Global Warming Potential (GWP) values of 1430 and 23900 respectively. The present contribution has been performed as a part of efforts to reduce the amount of greenhouse gases used in high energy experiments. The performance of MRPC has been measured with two different gas mixtures; $rm C_2F_4H_2$ based gas mixtures and the ecological $rm C_3F_4H_2$ (HFO-1234ze). A small MRPC was used for the tests. It has an sensitive area of 20 $times$ 20 $rm cm^2$; it was been built with 6 gaps of 220 $mu$m. In normal operation, the strong space charge created within the gas avalanche limits the avalanches growth. $rm SF_6$ plays an important part in the process due to its high attachment coefficient at low electric fields. It is thus necessary to find another gas that has a similar attachment coefficient. $rm CF_{3}I$ is a possible candidate. Tests were performed with this gas added to $rm C_3F_4H_2$.
The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology
The CSR External-target Experiment (CEE) will be the first large-scale nuclear physics experiment device at the Cooling Storage Ring (CSR) of the Heavy-Ion Research Facility in Lanzhou (HIRFL) in China. A new T0 detector has been proposed to measure
In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extendi
The Multigap Resistive Plate Chambers (MRPCs) provide excellent timing as well as position resolutions at relatively low cost. Therefore, they can be used in medical imaging applications such as PET where precise timing is a crucial parameter of meas
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs. A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CER