The aim of this sequel to arXiv:1812.02935 is to set up the cornerstones of Koszul duality and Koszulity in the context of a large class of operadic categories. In particular, we will prove that operads, in the generalized sense of Batanin-Markl, gov
erning important operad- and/or PROP-like structures such as the classical operads, their variants such as cyclic, modular or wheeled operads, and also diver
Batanin and Markls operadic categories are categories in which each map is endowed with a finite collection of abstract fibres -- also objects of the same category -- subject to suitable axioms. We give a reconstruction of the data and axioms of oper
adic categories in terms of the decalage comonad D on small categories. A simple case involves unary operadic categories -- ones wherein each map has exactly one abstract fibre -- which are exhibited as categories which are, first of all, coalgebras for the comonad D, and, furthermore, algebras for the monad induced on the category of D-coalgebras by the forgetful-cofree adjunction. A similar description is found for general operadic categories arising out of a corresponding analysis that starts from a modified decalage comonad on the arrow category of Cat.
We construct explicit minimal models for the (hyper)operads governing modular, cyclic and ordinary operads, and wheeled properads, respectively. Algebras for these models are homoto
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $inf
ty$-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of $infty$-operads, as a localization of a presheaf $infty$-category, and we use this to give a simple proof of the equivalence between Luries and Barwicks models for $infty$-operads.