ﻻ يوجد ملخص باللغة العربية
We calculate the cross section and transverse-momentum ($P_{bot}$) distribution of the Breit-Wheeler process in relativistic heavy-ion collisions and their dependence on collision impact parameter ($b$). To accomplish this, the Equivalent Photon Approximation (EPA) was generalized in a more differential way compared to the approach traditionally used for inclusive collisions. In addition, a lowest-order QED calculation with straightline assumption was performed as a standard baseline for comparison. The cross section as a function of $b$ is consistent with previous calculations using the equivalent one-photon distribution function. Most importantly, the $P_{bot}$ shape from this model is strongly dependent on impact parameter and can quantitatively explain the $P_{bot}$ broadening observed recently by RHIC and LHC experiments. This broadening effect from the initial QED field strength should be considered in studying possible trapped magnetic field and multiple scattering in a Quark-Gluon Plasma (QGP). The impact-parameter sensitive observable also provides a controllable tool for studying extreme electromagnetic fields.
The dilepton transverse momentum spectra and invariant mass spectra for low $p_T <0.15$~GeV/c in Au+Au collisions of different centralities at $sqrt{s_{NN}}$ = 200 GeV are studied within the parton-hadron-string dynamics (PHSD) transport approach. Th
Ultra-relativistic heavy-ion collisions are expected to produce the strongest electromagnetic fields in the known Universe. These highly-Lorentz contracted fields can manifest themselves as linearly polarized quasi-real photons that can interact via
Higher order symmetric cumulants of global collective observables in heavy ion collisions are studied. The symmetric cumulants can be straightforwardly constructed for scalar observables: the average transverse momentum, the multiplicity, and the squ
Transverse-mass spectra, their inverse slopes and mean transverse masses in relativistic collisions of heavy nuclei are analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 39 GeV. The analysis is performed within the three-fluid
We propose the skewness of mean transverse momentum, $langle p_t rangle$, fluctuations as a fine probe of hydrodynamic behavior in relativistic nuclear collisions. We describe how the skewness of the $langle p_t rangle$ distribution can be analyzed e