ﻻ يوجد ملخص باللغة العربية
We solved the impact-parameter dependent Balitsky-Kovchegov equation with the recently proposed collinearly imporved kernel. We find that the solutions do not present the Coulomb tails that have affected previous studies. We also show that once choosing an adequate initial condition it is possible to obtain a reasonable description of HERA data on the structure function of the proton, as well as on the cross section for the exclusive production of a $mathrm{J/}psi$ vector meson off proton targets. As a further application of the solutions, we computed the impact-parameter dependent Weiszacker-Williams gluon distribution.
The solution to the impact-parameter dependent Balitsky-Kovchegov equation with the collinearly improved kernel is studied in detail. The solution does not present the phenomenon of Coulomb tails at large impact parameters that have affected previous
In this work we present dipole scattering amplitudes, including the dependence on the impact-parameter, for a variety of nuclear targets of interest for the electron-ion colliders (EICs) being currently designed. These amplitudes are obtained by nume
{In this paper we propose a new impact-parameter dependent CGC/saturation model. We introduce two new features in the model that make it consistent with what we know theoretically about the deep inelastic scattering. They are: the use of the exact fo
The variational approach to QCD in Coulomb gauge developed previously by the Tubingen group is improved by enlarging the space of quark trial vacuum wave functionals through a new Dirac structure in the quark-gluon coupling. Our ansatz for the quark
This paper is the first attempt to build CGC/saturation model based on the next-to-leading order corrections to linear and non-linear evolution in QCD. We assume that the renormalization scale is the saturation momentum and found that the scattering