ﻻ يوجد ملخص باللغة العربية
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative polynomial algebras, in particular, it is a Noetherian PI-domain that has finite Gelfand--Kirillov dimension. In this paper we deal with arbitrary finite (left) non-degenerate solutions. Although the structure of both the monoid $M(X,r)$ and the algebra $K[M(X,r)]$ is much more complicated than in the involutive case, we provide some deep insights. In this general context, using a realization of Lebed and Vendramin of $M(X,r)$ as a regular submonoid in the semidirect product $A(X,r)rtimesmathrm{Sym}(X)$, where $A(X,r)$ is the structure monoid of the rack solution associated to $(X,r)$, we prove that $K[M(X,r)]$ is a module finite normal extension of a commutative affine subalgebra. In particular, $K[M(X,r)]$ is a Noetherian PI-algebra of finite Gelfand--Kirillov dimension bounded by $|X|$. We also characterize, in ring-theoretical terms of $K[M(X,r)]$, when $(X,r)$ is an involutive solution. This characterization provides, in particular, a positive answer to the Gateva-Ivanova conjecture concerning cancellativity of $M(X,r)$. These results allow us to control the prime spectrum of the algebra $K[M(X,r)]$ and to describe the Jacobson radical and prime radical of $K[M(X,r)]$. Finally, we give a matrix-type representation of the algebra $K[M(X,r)]/P$ for each prime ideal $P$ of $K[M(X,r)]$. As a consequence, we show that if $K[M(X,r)]$ is semiprime then there exist finitely many finitely generated abelian-by-finite groups, $G_1,dotsc,G_m$, each being the group of quotients of a cancellative subsemigroup of $M(X,r)$ such that the algebra $K[M(X,r)]$ embeds into $mathrm{M}_{v_1}(K[G_1])timesdotsbtimes mathrm{M}_{v_m}(K[G_m])$.
To determine and analyze arbitrary left non-degenerate set-theoretic solutions of the Yang-Baxter equation (not necessarily bijective), we introduce an associative algebraic structure, called a YB-semitruss, that forms a subclass of the category of s
Given a finite bijective non-degenerate set-theoretic solution $(X,r)$ of the Yang--Baxter equation we characterize when its structure monoid $M(X,r)$ is Malcev nilpotent. Applying this characterization to solutions coming from racks, we rediscover s
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A=A(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there ex
To every involutive non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation on a finite set $X$ there is a naturally associated finite solvable permutation group ${mathcal G}(X,r)$ acting on $X$. We prove that every primitive permut
Given a finite non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation and a field $K$, the structure $K$-algebra of $(X,r)$ is $A=A(K,X,r)=Klangle Xmid xy=uv mbox{ whenever }r(x,y)=(u,v)rangle$. Note that $A=oplus_{ngeq 0} A_n$ is