ﻻ يوجد ملخص باللغة العربية
The decoupling of spin and density dynamics is a remarkable feature of quantum one-dimensional many-body systems. In a few-body regime, however, little is known about this phenomenon. To address this problem, we study the time evolution of a small system of strongly interacting fermions after a sudden change in the trapping geometry. We show that, even at the few-body level, the excitation spectrum of this system presents separate signatures of spin and density dynamics. Moreover, we describe the effect of considering additional internal states with SU(N) symmetry, which ultimately leads to the vanishing of spin excitations in a completely balanced system.
We develop a theory for light propagating in an atomic Bose-Einstein condensate in the presence of strong interactions. The resulting many-body correlations are shown to have profound effects on the optical properties of this interacting medium. For
Quantum mechanical few-body systems in reduced dimensionalities can exhibit many interesting properties such as scale-invariance and universality. Analytical descriptions are often available for integer dimensionality, however, numerical approaches a
We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coe
It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound-states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-p
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclas