We describe a modification of the stochastic coupled cluster algorithm that allows the use of multiple reference determinants. By considering the secondary references as excitations of the primary reference and using them to change the acceptance criteria for selection and spawning, we obtain a simple form of stochastic multireference coupled cluster which preserves the appealing aspects of the single reference approach. The method is able to successfully describe strongly correlated molecular systems using few references and low cluster truncation levels, showing promise as a tool to tackle strong correlation in more general systems. Moreover, it allows simple and comprehensive control of the included references and excitors thereof, and this flexibility can be taken advantage of to gain insight into some of the inner workings of established electronic structure methods.