ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Experimental Realization of a Basic Z2 Topological Semimetal

88   0   0.0 ( 0 )
 نشر من قبل Erik Haubold
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental and theoretical evidence that GaGeTe is a basic $Z_2$ topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the primer 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion in the textit{T}-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron- and hole-like carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the materials application potential.



قيم البحث

اقرأ أيضاً

Intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but rem ains elusive experimentally so far. Here, we report the experimental realization of high-quality thin films of an intrinsic magnetic TI---MnBi$_2$Te$_4$---by alternate growth of a Bi$_2$Te$_3$ quintuple-layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators in a well-controlled way.
The nodal line semimetals have attracted much attention due to their unique topological electronic structure and exotic physical properties. A genuine nodal line semimetal is qualified by the presence of Dirac nodes along a line in the momentum space that are protected against the spin-orbit coupling. In addition, it requires that the Dirac points lie close to the Fermi level allowing to dictate the macroscopic physical properties. Although the material realization of nodal line semimetals have been theoretically predicted in numerous compounds, only a few of them have been experimentally verified and the realization of a genuine nodal line semimetal is particularly rare. Here we report the realization of a genuine nodal line semimetal in LaSbTe. We investigated the electronic structure of LaSbTe by band structure calculations and angle-resolved photoemission (ARPES) measurements. Taking spin-orbit coupling into account, our band structure calculations predict that a nodal line is formed in the boundary surface of the Brillouin zone which is robust and lies close to the Fermi level. The Dirac nodes along the X-R line in momentum space are directly observed in our ARPES measurements and the energies of these Dirac nodes are all close to the Fermi level. These results constitute clear evidence that LaSbTe is a genuine nodal line semimetal,providing a new platform to explore for novel phenomena and possible applications associated with the nodal line semimetals.
We report a topological semimetal W2As3 with a space group C2/m. Based on the first-principles calculations, band crossings are partially gapped when spin-orbit coupling is included. The Z2 indices at the electron filling are [1;111], characterizing a strong topological insulator and topological surface states. From the magnetotransport measurements, nearly quadratic field dependence of magnetoresistance (MR) (B || [200]) at 3 K indicates an electron-hole compensated compound whose longitudinal MR reaches 115 at 3 K and 15 T. In addition, multiband features are detected from the high-magnetic-field Shubnikov-de Haas (SdH) oscillation, Hall resistivity, and band calculations. A nontrivial pi Berrys phase is obtained, suggesting the topological feature of this material. A two- band model can fit well the conductivity and Hall coefficient. Our experiments manifest that the transport properties of W2As3 are in good agreement with the theoretical calculations.
104 - B. Q. Lv , Z.-L. Feng , Q.-N. Xu 2016
Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed c rystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions.
215 - Zhi-Kang Lin , Ying Wu , Bin Jiang 2021
Gauge fields are at the heart of the fundamental science of our universe and various materials. For instance, Laughlins gedanken experiment of gauge flux insertion played a major role in understanding the quantum Hall effects. Gauge flux insertion in to a single unit-cell, though crucial for detecting exotic quantum phases and for the ultimate control of quantum dynamics and classical waves, however, has not yet been achieved in laboratory. Here, we report on the experimental realization of gauge flux insertion into a single plaquette in a lattice system with the gauge phase ranging from 0 to 2pi which is realized through a novel approach based on three consecutive procedures: the dimension extension, creating an engineered dislocation and the dimensional reduction. Furthermore, we discover that the single-plaquette gauge flux insertion leads to a new phenomenon termed as the topological Wannier cycles, i.e., the cyclic spectral flows across multiple band gaps which are manifested as the topological boundary states (TBSs) on the plaquette. Such topological Wannier cycles emerge only if the Wannier centers are enclosed by the flux-carrying plaquette. Exploiting acoustic metamaterials and versatile pump-probe measurements, we observe the topological Wannier cycles by detecting the TBSs in various ways and confirm the single-plaquette gauge flux insertion by measuring the gauge phase accumulation on the plaquette. Our work unveils an unprecedented regime for lattice gauge systems and a fundamental topological response which could empower future studies on artificial gauge fields and topological materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا