Magnetoelastic hybrid excitations in CeAuAl$_3$


الملخص بالإنكليزية

The interactions between elementary excitations such as phonons, plasmons, magnons, or particle-hole pairs, drive emergent functionalities and electronic instabilities such as multiferroic behaviour, anomalous thermoelectric properties, polar order, or superconductivity. Whereas various hybrid excitations have been studied extensively, the feed-back of prototypical elementary excitations on the crystal electric fields (CEF), defining the environment in which the elementary excitations arise, has been explored for very strong coupling only. We report high-resolution neutron spectroscopy and ab-initio phonon calculations of {ceaual}, an archetypal fluctuating valence compound. The high resolution of our data allows us to quantify the energy scales of three coupling mechanisms between phonons, CEF-split localized 4f electron states, and conduction electrons. Although these interactions do not appear to be atypically strong for this class of materials, we resolve, for the first time, a profound renormalization of low-energy quasiparticle excitations on all levels. The key anomalies of the spectrum we observe comprise (1) the formation of a CEF-phonon bound state with a comparatively low density of acoustic phonons reminiscent of vibronic modes observed in other materials, where they require a pronounced abundance of optical phonons, (2) an anti-crossing of CEF states and acoustic phonons, and (3) a strong broadening of CEF states due to the hybridization with more itinerant excitations. The fact that all of these features are well resolved in CeAuAl$_3$ suggests that similar hybrid excitations should also be dominant in a large family of related materials. This promises a predictive understanding towards the discovery of new magneto-elastic functionalities and instabilities.

تحميل البحث