ﻻ يوجد ملخص باللغة العربية
We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfuscation mechanism means that the attacker cannot significantly gain any information on the distribution of the mechanisms input by observing its output. Then we show that existing local mechanisms can hide input distributions in terms of distribution privacy, while deteriorating the utility by adding too much noise. For example, we prove that the Laplace mechanism needs to add a large amount of noise proportionally to the infinite Wasserstein distance between the two distributions we want to make indistinguishable. To improve the tradeoff between distribution privacy and utility, we introduce a local obfuscation mechanism, called a tupling mechanism, that adds random dummy data to the output. Then we apply this mechanism to the protection of user attributes in location based services. By experiments, we demonstrate that the tupling mechanism outperforms popular local mechanisms in terms of attribute obfuscation and service quality.
We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distributi
Data hiding is referred to as the art of hiding secret data into a digital cover for covert communication. In this letter, we propose a novel method to disguise data hiding tools, including a data embedding tool and a data extraction tool, as a deep
Program obfuscation is an important software protection technique that prevents attackers from revealing the programming logic and design of the software. We introduce translingual obfuscation, a new software obfuscation scheme which makes programs o
LDP (Local Differential Privacy) has been widely studied to estimate statistics of personal data (e.g., distribution underlying the data) while protecting users privacy. Although LDP does not require a trusted third party, it regards all personal dat
In this paper we investigate the usage of adversarial perturbations for the purpose of privacy from human perception and model (machine) based detection. We employ adversarial perturbations for obfuscating certain variables in raw data while preservi