ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Obfuscation Mechanisms for Hiding Probability Distributions

176   0   0.0 ( 0 )
 نشر من قبل Yusuke Kawamoto
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfuscation mechanism means that the attacker cannot significantly gain any information on the distribution of the mechanisms input by observing its output. Then we show that existing local mechanisms can hide input distributions in terms of distribution privacy, while deteriorating the utility by adding too much noise. For example, we prove that the Laplace mechanism needs to add a large amount of noise proportionally to the infinite Wasserstein distance between the two distributions we want to make indistinguishable. To improve the tradeoff between distribution privacy and utility, we introduce a local obfuscation mechanism, called a tupling mechanism, that adds random dummy data to the output. Then we apply this mechanism to the protection of user attributes in location based services. By experiments, we demonstrate that the tupling mechanism outperforms popular local mechanisms in terms of attribute obfuscation and service quality.



قيم البحث

اقرأ أيضاً

We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distributi on privacy (DistP) by generalizing it to divergence, and propose local obfuscation mechanisms that provide divergence distribution privacy. To provide f-divergence distribution privacy, we prove that probabilistic perturbation noise should be added proportionally to the Earth movers distance between the probability distributions that we want to make indistinguishable. Furthermore, we introduce a local obfuscation mechanism, which we call a coupling mechanism, that provides divergence distribution privacy while optimizing the utility of obfuscated data by using exact/approximate auxiliary information on the input distributions we want to protect.
Data hiding is referred to as the art of hiding secret data into a digital cover for covert communication. In this letter, we propose a novel method to disguise data hiding tools, including a data embedding tool and a data extraction tool, as a deep neural network (DNN) with an ordinary task. After training a DNN for both style transfer and data hiding, while the DNN can transfer the style of an image to a target one, it can be also used to hide secret data into a cover image or extract secret data from a stego image by inputting the trigger signal. In other words, the tools of data hiding are hidden to avoid arousing suspicion.
116 - Pei Wang , Shuai Wang , Jiang Ming 2016
Program obfuscation is an important software protection technique that prevents attackers from revealing the programming logic and design of the software. We introduce translingual obfuscation, a new software obfuscation scheme which makes programs o bscure by misusing the unique features of certain programming languages. Translingual obfuscation translates part of a program from its original language to another language which has a different programming paradigm and execution model, thus increasing program complexity and impeding reverse engineering. In this paper, we investigate the feasibility and effectiveness of translingual obfuscation with Prolog, a logic programming language. We implement translingual obfuscation in a tool called BABEL, which can selectively translate C functions into Prolog predicates. By leveraging two important features of the Prolog language, i.e., unification and backtracking, BABEL obfuscates both the data layout and control flow of C programs, making them much more difficult to reverse engineer. Our experiments show that BABEL provides effective and stealthy software obfuscation, while the cost is only modest compared to one of the most popular commercial obfuscators on the market. With BABEL, we verified the feasibility of translingual obfuscation, which we consider to be a promising new direction for software obfuscation.
LDP (Local Differential Privacy) has been widely studied to estimate statistics of personal data (e.g., distribution underlying the data) while protecting users privacy. Although LDP does not require a trusted third party, it regards all personal dat a equally sensitive, which causes excessive obfuscation hence the loss of utility. In this paper, we introduce the notion of ULDP (Utility-optimized LDP), which provides a privacy guarantee equivalent to LDP only for sensitive data. We first consider the setting where all users use the same obfuscation mechanism, and propose two mechanisms providing ULDP: utility-optimized randomized response and utility-optimized RAPPOR. We then consider the setting where the distinction between sensitive and non-sensitive data can be different from user to user. For this setting, we propose a personalized ULDP mechanism with semantic tags to estimate the distribution of personal data with high utility while keeping secret what is sensitive for each user. We show theoretically and experimentally that our mechanisms provide much higher utility than the existing LDP mechanisms when there are a lot of non-sensitive data. We also show that when most of the data are non-sensitive, our mechanisms even provide almost the same utility as non-private mechanisms in the low privacy regime.
In this paper we investigate the usage of adversarial perturbations for the purpose of privacy from human perception and model (machine) based detection. We employ adversarial perturbations for obfuscating certain variables in raw data while preservi ng the rest. Current adversarial perturbation methods are used for data poisoning with minimal perturbations of the raw data such that the machine learning models performance is adversely impacted while the human vision cannot perceive the difference in the poisoned dataset due to minimal nature of perturbations. We instead apply relatively maximal perturbations of raw data to conditionally damage models classification of one attribute while preserving the model performance over another attribute. In addition, the maximal nature of perturbation helps adversely impact human perception in classifying hidden attribute apart from impacting model performance. We validate our result qualitatively by showing the obfuscated dataset and quantitatively by showing the inability of models trained on clean data to predict the hidden attribute from the perturbed dataset while being able to predict the rest of attributes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا