Permutations Unlabeled beyond Sampling Unknown


الملخص بالإنكليزية

A recent unlabeled sampling result by Unnikrishnan, Haghighatshoar and Vetterli states that with probability one over iid Gaussian matrices $A$, any $x$ can be uniquely recovered from an unknown permutation of $y = A x$ as soon as $A$ has at least twice as many rows as columns. We show that this condition on $A$ implies something much stronger: that an unknown vector $x$ can be recovered from measurements $y = T A x$, when the unknown $T$ belongs to an arbitrary set of invertible, diagonalizable linear transformations $mathcal{T}$. The set $mathcal{T}$ can be finite or countably infinite. When it is the set of $m times m$ permutation matrices, we have the classical unlabeled sampling problem. We show that for almost all $A$ with at least twice as many rows as columns, all $x$ can be recovered either uniquely, or up to a scale depending on $mathcal{T}$, and that the condition on the size of $A$ is necessary. Our proof is based on vector space geometry. Specializing to permutations we obtain a simplified proof of the uniqueness result of Unnikrishnan, Haghighatshoar and Vetterli. In this letter we are only concerned with uniqueness; stability and algorithms are left for future work.

تحميل البحث