ﻻ يوجد ملخص باللغة العربية
In our previous work [Chen el al., J. Comput. Phys., 373(2018)], the quadratic Wasserstein metric is successfully applied to the earthquake location problem. The actual earthquake hypocenter can be accurately recovered starting from initial values very far from the true ones. However, the seismic wave signals need to be normalized since the quadratic Wasserstein metric requires mass conservation. This brings a critical difficulty. Since the amplitude of a seismogram at a receiver is a good representation of the distance between the source and the receiver, simply normalizing the signals will cause the objective function in optimization process to be insensitive to the distance between the source and the receiver. When the data is contaminated with strong noise, the minimum point of the objective function will deviate and lead to a low accurate location result. To overcome the difficulty mentioned above, we apply the Wasserstein-Fisher-Rao (WFR) metric [Chizat et al., Found. Comput. Math., 18(2018)] to the earthquake location problem. The WFR metric is one of the newly developed metric in the unbalanced Optimal Transport theory. It does not require the normalization of the seismic signals. Thus, the amplitude of seismograms can be considered as a new constraint, which can substantially improve the sensitivity of the objective function to the distance between the source and the receiver. As a result, we can expect more accurate location results from the WFR metric based method compare to those based on quadratic Wasserstein metric under high-intensity noise. The numerical examples also demonstrate this.
On a closed manifold of dimension greater than one, every smooth weak Riemannian metric on the space of smooth positive probability densities, that is invariant under the action of the diffeomorphism group, is a multiple of the Fisher--Rao metric.
The purpose of this article is to exploit the geometric structure of Quantum Mechanics and of statistical manifolds to study the qualitative effect that the quantum properties have in the statistical description of a system. We show that the end poin
It is known that on a closed manifold of dimension greater than one, every smooth weak Riemannian metric on the space of smooth positive densities that is invariant under the action of the diffeomorphism group, is of the form $$ G_mu(alpha,beta)=C_1(
In this paper, we study the geometry induced by the Fisher-Rao metric on the parameter space of Dirichlet distributions. We show that this space is geodesically complete and has everywhere negative sectional curvature. An important consequence of thi
Adversarial robustness has become a topic of growing interest in machine learning since it was observed that neural networks tend to be brittle. We propose an information-geometric formulation of adversarial defense and introduce FIRE, a new Fisher-R