ﻻ يوجد ملخص باللغة العربية
Simultaneous wireless information and power transfer (SWIPT) has been recognized as a promising approach to improving the performance of energy constrained networks. In this paper, we investigate a SWIPT based three-step two-way decode-and-forward (DF) relay network with a non-linear energy harvester equipped at the relay. As most existing works require instantaneous channel state information (CSI) while CSI is not fully utilized when designing power splitting (PS) schemes, there exists an opportunity for enhancement by exploiting CSI for PS design. To this end, we propose a novel heterogeneous PS scheme, where the PS ratios are dynamically changed according to instantaneous channel gains. In particular, we derive the closed-form expressions of the optimal PS ratios to maximize the capacity of the investigated network and analyze the outage probability with the optimal dynamic PS ratios based on the non-linear energy harvesting (EH) model. The results provide valuable insights into the effect of various system parameters, such as transmit power of the source, source transmission rate, and source to relay distance on the performance of the investigated network. The results show that our proposed PS scheme outperforms the existing schemes.
Wireless energy harvesting (WEH) has been recognized as a promising technique to prolong the lifetime of energy constrained relay nodes in wireless sensor networks. Its application and related performance study in three-step two-way decode-and-forwar
This paper focuses on the design of an optimal resource allocation scheme to maximize the energy efficiency (EE) in a simultaneous wireless information and power transfer (SWIPT) enabled two-way decode-and-forward (DF) relay network under a non-linea
Energy harvesting (EH) nodes can play an important role in cooperative communication systems which do not have a continuous power supply. In this paper, we consider the optimization of conventional and buffer-aided link adaptive EH relaying systems,
Motivated by the recent development of energy harvesting communications, and the trend of multimedia contents caching and push at the access edge and user terminals, this paper considers how to design an effective push mechanism of energy harvesting
In this paper, we study the outage performance of simultaneous wireless information and power transfer (SWIP- T) based three-step two-way decode-and-forward (DF) relay networks, where both power-splitting (PS) and harvest-then-forward are employed. I