ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the Odderon in Ultraperipheral Proton--Ion Collisions at the LHC

54   0   0.0 ( 0 )
 نشر من قبل Alan D. Martin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the possibility of observing Odderon exchange in proton--ion collisions at the LHC, via the ultraperipheral photoproduction of C-even mesons. As well as the signal, we consider in detail the principle backgrounds, due to QCD--initiated production (i.e. double Pomeron exchange) and $gammagamma$ fusion. We find that while the photon--initiated background is dominant at very small momentum transfer, this can be effectively removed by placing a reasonable cut on the transverse momentum of the produced meson. In the case of QCD--initiated production, we show this is in general strongly suppressed by the small probability of no additional particle production in the central detector, namely the survival factor. In some scenarios, this suppression is sufficient to permit the observation of Odderon exchange in Pb$-p$ collisions in a clean environment, or else to place bounds on this. We in addition identify the cases of $pi^0$ and $eta(548)$ production as particularly promising channels. Here, the QCD--initiated background is absent for $pi^0$ due to isospin conservation and very small for $eta(548)$ due to its dominantly flavour octet nature and odd parity.



قيم البحث

اقرأ أيضاً

We calculate the cross section of inclusive dijet photoproduction in ultraperipheral collisions (UPCs) of heavy ions at the CERN Large Hadron Collider using next-to-leading order perturbative QCD and demonstrate that it provides a good description of the ATLAS data. We study the role of this data in constraining nuclear parton distribution functions (nPDFs) using the Bayesian reweighting technique and find that it can reduce current uncertainties of nPDFs at small $x$ by a factor of 2. We also make predictions for diffractive dijet photoproduction in UPCs and examine its potential to shed light on the disputed mechanism of QCD factorization breaking in diffraction.
Despite rather long-term theoretical and experimental studies, the hypothesis of the non-zero intrinsic (or valence-like) heavy quark component of the proton distribution functions has not yet been confirmed or rejected. The LHC with $pp$-collisions at $sqrt{s}=$ 7--14 TeV will obviously supply extra unique information concerning the above-mentioned component of the proton. To use the LHC potential, first of all, one should select the parton-level (sub)processes (and final-state signatures) that are most sensitive to the intrinsic heavy quark contributions. To this end inclusive production of $c(b)$-jets accompanied by photons is considered. On the basis of the performed theoretical study it is demonstrated that the investigation of the intrinsic heavy quark contributions looks very promising at the LHC in processes such as $pprightarrow gamma+ c(b)+X$.
In this paper we perform a systematic study of the exclusive dilepton production by $gamma gamma$ interactions in $PbPb$ collisions at the LHC Run 2 energies considering different levels of precision for the treatment of the absorptive corrections an d for the nuclear form factor. The rapidity and invariant mass distributions are estimated taking into account the experimental cutoffs and a comparison with the recent ALICE and ATLAS data for the $e^+ e^-$ and $mu^+ mu^-$ production is presented.
Using the Gribov-Glauber model for photon-nucleus scattering and a generalization of the vector meson dominance model for the hadronic structure of the photon, we make predictions for the cross section of incoherent $rho$ photoproduction in Pb-Pb ult raperipheral collisions (UPCs) in the Large Hadron Collider kinematics. We find that the effect of the inelastic nuclear shadowing is significant and leads to an additional 25% suppression of the incoherent cross section. Comparing our predictions to those of the STARlight Monte Carlo framework, we observe very significant differences.
191 - Leonid Frankfurt 2008
We evaluate the large momentum transfer $J/psi$ photoproduction with rapidity gaps in ultraperipheral proton-ion collisions at the LHC which provides an effective method of probing dynamics of large t elastic hard QCD Pomeron interactions. It is show n that the experimental studies of this process would allow to investigate the energy dependence of cross section of elastic scattering of a small $cbar c$ dipole off the gluon over a wide range of invariant energies 10^3 < s_{cbar c - gluon} < 10^6 GeV^2. The accessible energy range exceeds the one reached in gamma p at HERA by a factor of 10 and allows the kinematic cuts which improve greatly sensitivity to the Pomeron dynamics as compared to the HERA measurements. The cross section is expected to change by a factor ge 20 throughout this interval and our estimates predict quite reasonable counting rates for this process with the several of the LHC detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا