ﻻ يوجد ملخص باللغة العربية
We study a data analysts problem of acquiring data from self-interested individuals to obtain an accurate estimation of some statistic of a population, subject to an expected budget constraint. Each data holder incurs a cost, which is unknown to the data analyst, to acquire and report his data. The cost can be arbitrarily correlated with the data. The data analyst has an expected budget that she can use to incentivize individuals to provide their data. The goal is to design a joint acquisition-estimation mechanism to optimize the performance of the produced estimator, without any prior information on the underlying distribution of cost and data. We investigate two types of estimations: unbiased point estimation and confidence interval estimation. Unbiased estimators: We design a truthful, individually rational, online mechanism to acquire data from individuals and output an unbiased estimator of the population mean when the data analyst has no prior information on the cost-data distribution and individuals arrive in a random order. The performance of this mechanism matches that of the optimal mechanism, which knows the true cost distribution, within a constant factor. The performance of an estimator is evaluated by its variance under the worst-case cost-data correlation. Confidence intervals: We characterize an approximately optimal (within a factor $2$) mechanism for obtaining a confidence interval of the population mean when the data analyst knows the true cost distribution at the beginning. This mechanism is efficiently computable. We then design a truthful, individually rational, online algorithm that is only worse than the approximately optimal mechanism by a constant factor. The performance of an estimator is evaluated by its expected length under the worst-case cost-data correlation.
We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the
We consider the problem of purchasing data for machine learning or statistical estimation. The data analyst has a budget to purchase datasets from multiple data providers. She does not have any test data that can be used to evaluate the collected dat
When the data are stored in a distributed manner, direct application of traditional statistical inference procedures is often prohibitive due to communication cost and privacy concerns. This paper develops and investigates two Communication-Efficient
We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially cho
Quantization has emerged as one of the most prevalent approaches to compress and accelerate neural networks. Recently, data-free quantization has been widely studied as a practical and promising solution. It synthesizes data for calibrating the quant