ﻻ يوجد ملخص باللغة العربية
We report two microlensing events, KMT-2017-BLG-1038 and KMT-2017-BLG-1146 that are caused by planetary systems. These events were discovered by KMTNet survey observations from the $2017$ bulge season. The discovered systems consist of a planet and host star with mass ratios, $5.3_{-0.4}^{+0.2} times 10^{-3}$ and $2.0_{-0.1}^{+0.6} times 10^{-3}$, respectively. Based on a Bayesian analysis assuming a Galactic model without stellar remnant hosts, we find that the planet, KMT-2017-BLG-1038Lb, is a super Jupiter-mass planet ($M_{rm p}= 2.04_{-1.15}^{+2.02},M_{rm J}$) orbiting a mid-M dwarf host ($M_{rm h}= 0.37_{-0.20}^{+0.36}, M_{odot}$) that is located at $6.01_{-1.72}^{+1.27}$ kpc toward the Galactic bulge. The other planet, KMT-2017-BLG-1146Lb, is a sub Jupiter-mass planet ($M_{rm p}= 0.71_{-0.42}^{+0.80},M_{rm J}$) orbiting a mid-M dwarf host ($M_{rm h}= 0.33_{-0.20}^{+0.36},M_{odot}$) at a distance toward the Galactic bulge of $6.50_{-2.00}^{+1.38}$ kpc. Both are potentially gaseous planets that are beyond their hosts snow lines. These typical microlensing planets will be routinely discovered by second-generation microlensing surveys, rapidly increasing the number of detections.
We report two microlensing planet candidates discovered by the KMTNet survey in $2017$. However, both events have the 2L1S/1L2S degeneracy, which is an obstacle to claiming the discovery of the planets with certainty unless the degeneracy can be reso
Type-II migration of giant planets has a speed proportional to the discs viscosity for values of the alpha viscosity parameter larger than 1.e-4 . At lower viscosities previous studies, based on 2D simulations have shown that migration can be very ch
We present the discovery of two transiting exoplanets. HAT-P-28b orbits a V=13.03 G3 dwarf star with a period P = 3.2572 d and has a mass of 0.63 +- 0.04 MJ and a radius of 1.21 + 0.11 -0.08 RJ yielding a mean density of 0.44 +- 0.09 g cm-3. HAT-P-29
In the core-accretion model the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter-mass bodies. Obtaining longer timescales for gas accretion may require using re
In this paper, we present the results of timing observations of PSRs J1949+3106 and J1950+2414, two binary millisecond pulsars discovered in data from the Arecibo ALFA pulsar survey (PALFA). The timing parameters include precise measurements of the p