ﻻ يوجد ملخص باللغة العربية
We propose an iterative solution method for the 3D high-frequency Helmholtz equation that exploits a contour integral formulation of spectral projectors. In this framework, the solution in certain invariant subspaces is approximated by solving complex-shifted linear systems, resulting in faster GMRES iterations due to the restricted spectrum. The shifted systems are solved by exploiting a polynomial fixed-point iteration, which is a robust scheme even if the magnitude of the shift is small. Numerical tests in 3D indicate that $O(n^{1/3})$ matrix-vector products are needed to solve a high-frequency problem with a matrix size $n$ with high accuracy. The method has a small storage requirement, can be applied to both dense and sparse linear systems, and is highly parallelizable.
We present a polynomial preconditioner for solving large systems of linear equations. The polynomial is derived from the minimum residual polynomial and is straightforward to compute and implement. It this paper, we study the polynomial preconditione
Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error. Often, such systems arise from the discretization of operator equations wi
This paper analyses the following question: let $mathbf{A}_j$, $j=1,2,$ be the Galerkin matrices corresponding to finite-element discretisations of the exterior Dirichlet problem for the heterogeneous Helmholtz equations $ ablacdot (A_j abla u_j) +
Let V be a smooth equidimensional quasi-affine variety of dimension r over the complex numbers $C$ and let $F$ be a $(ptimes s)$-matrix of coordinate functions of $C[V]$, where $sge p+r$. The pair $(V,F)$ determines a vector bundle $E$ of rank $s-p$
In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achiev