ترغب بنشر مسار تعليمي؟ اضغط هنا

The Phillips - Barger model for the elastic cross section and the Odderon

81   0   0.0 ( 0 )
 نشر من قبل Paulo Victor Recchia Gomes Silva
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the recent TOTEM data for the elastic proton -- proton ($pp$) scattering at $sqrt{s} =$ 8 and 13 TeV, we update previous studies of the differential cross sections using the Phillips -- Barger (PB) model, which parametrizes the amplitude in terms of a small number of free parameters. We demonstrate that this model is able to describe the recent $pp$ data on a statistically acceptable way. Additionally, we perform separate fits of the $pp$ data for each center - of - mass energy and propose a parametrization for the energy dependence of the parameters present in the PB model. As a consequence, we are able to present the PB predictions for the elastic proton - proton cross section at $sqrt{s} = 546$ GeV and $1.8$ TeV, which are compared with the existing antiproton -- proton ($bar{p}p$) data. We show that the PB predictions, constrained by the $pp$ data, are not able to describe the $bar{p}p$ data. In particular, the PB model predicts a dip in the differential cross section that is not present in the $bar{p}p$ data. Such result suggests the contribution of the Odderon exchange at high energies.



قيم البحث

اقرأ أيضاً

An almost model-independent parametrization for the ratio of the total cross section to the elastic slope, as function of the center of mass energy, is introduced. The analytical result is based on the approximate relation of this quantity with the r atio $R$ of the elastic to total cross section and empirical fits to the $R$ data from proton-proton scattering above 10 GeV, under the conditions of asymptotic unitarity and the black-disk limit. This parametrization may be useful in studies of extensive air showers and the determination of the proton-proton total cross section from proton-air production cross section in cosmic-ray experiments.
An empirical model for the $pp$ elastic differential cross section is proposed. Inspired by early work by Barger and Phillips, we parametrize the scattering amplitude in building blocks, comprising of two exponentials with a relative phase, supplemen ting the dominant term at small $-t$ with the proton form factor. This model suitably applies to LHC7 and ISR data, enabling to make simple predictions for higher LHC energies and to check whether asymptotia might be achieved.
174 - Joshua Spitz 2010
ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuTs automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.
We investigate some well-known problematic aspects of the single-jet inclusive cross-section, specifically its non-unitarity and the possibly related issue of apparent perturbative instability at low orders. We study and clarify their origin by intro ducing possible alternative weighted definitions of the observable which restore unitarity. We show that the perturbative instability of the standard definition is an accidental artefact of the smallness of the NLO $K$ factor which only manifests itself for values of the jet radius in the range $Rsim 0.3-0.6$, and that its non-unitarity is necessary in order to ensure cancellation of logs of the momentum cutoff used in the jet definition. We also show that alternative unitary definitions do not have better perturbative properties compared to the conventional non-unitary definition, while suffering from lack of cancellation of large logs.
56 - Artur M. Ankowski 2016
The hypothesis of the conserved vector current, relating the vector weak and isovector electromagnetic currents, plays a fundamental role in quantitative description of neutrino interactions. Despite being experimentally confirmed with great precisio n, it is not fully implemented in existing calculations of the cross section for inverse beta decay, the dominant mechanism of antineutrino scattering at energies below a few tens of MeV. In this article, I estimate the corresponding cross section and its uncertainty, ensuring conservation of the vector current. While converging to previous calculations at energies of several MeV, the obtained result is appreciably lower and predicts more directional positron production near the reaction threshold. These findings suggest that in the current estimate of the flux of geologically produced antineutrinos the 232Th and 238U components may be underestimated by 6.1 and 3.7%, respectively. The proposed search for light sterile neutrinos using a 144Ce--144Pr source is predicted to collect the total event rate lower by 3% than previously estimated and to observe a spectral distortion that could be misinterpreted as an oscillation signal. In reactor-antineutrino experiments, together with a re-evaluation of the positron spectra, the predicted event rate should be reduced by 0.9%, diminishing the size of the reported anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا