ﻻ يوجد ملخص باللغة العربية
In this paper authors are going to present a Markov Decision Process (MDP) based algorithm in Industrial Internet of Things (IIoT) as a safety compliance layer for human in loop system. Though some industries are moving towards Industry 4.0 and attempting to automate the systems as much as possible by using robots, still human in loop systems are very common in developing countries like India. When ever there is a need for human machine interaction, there is a scope of health hazard. In this work we have developed a system for one such industry using MDP. The proposed algorithm used in this system learned the probability of state transition from experience as well as the system is adaptable to new changes by incorporating the concept of transfer learning. The system was evaluated on the data set obtained from 39 sensors connected to a computer numerically controlled (CNC) machine pushing data every second in a 24x7 scenario. The state changes are typically instructed by a human which subsequently lead to some intentional or unintentional mistakes and errors. The proposed system raises an alarm for the operator to warn which he may or may not overlook depending on his own perception about the present condition of the system. Repeated ignorance of the operator for a particular state transition warning guides the system to retrain the model. We observed 95.61% alarms raised by the said system are taken care of by the operator. 3.2% alarms are coming from the changes in the system which in turn used to retrain the model and 1.19% alarms are false alarms. We could not compute the error coming from the mistake performed by the human operator as there is no ground truth available for that.
Traffic congestion research is on the rise, thanks to urbanization, economic growth, and industrialization. Developed countries invest a lot of research money in collecting traffic data using Radio Frequency Identification (RFID), loop detectors, spe
This short paper is intended as an additional progress report to share our experiences in Indonesia on collecting, integrating and disseminating both global and local scientific data across the country through the web technology. Our recent efforts a
Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress towards such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators
Informal settlements are home to the most socially and economically vulnerable people on the planet. In order to deliver effective economic and social aid, non-government organizations (NGOs), such as the United Nations Childrens Fund (UNICEF), requi
In the current era of worldwide stock market interdependencies, the global financial village has become increasingly vulnerable to systemic collapse. The recent global financial crisis has highlighted the necessity of understanding and quantifying in