We perform a detailed study of the various decay channels of the heavy charged and neutral gauge bosons ($W_R$ and $Z_R$ respectively) in a left-right supersymmetric (LRSUSY) framework. The decay branching ratios of the $W_R$ and $Z_R$ bosons depend significantly on the particle spectrum and composition of the SUSY states. We show several combinations of mass spectrum for the SUSY particles to facilitate the decay of these heavy gauge bosons into various combinations of final states. Finally, we choose two benchmark points and perform detailed collider simulations for these heavy gauge bosons in the context of the high energy and high luminosity run of the large hadron collider. We analyze two SUSY cascade decay channels -- mono-$W$ + $slashed{E}_T$ and mono-$Z$ + $slashed{E}_T$ along with the standard dilepton and dijet final states. Our results show that the existence of these heavy gauge bosons can be ascertained in the direct decay channels of dilepton and dijet whereas the other two channels will be required to establish the supersymmetric nature of this model.